model.py 10.6 KB
Newer Older
M
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import math
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.layers.tensor as tensor
import paddle.fluid.layers.control_flow as cf

22 23
from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
M
malin10 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

class BowEncoder(object):
    """ bow-encoder """

    def __init__(self):
        self.param_name = ""

    def forward(self, emb):
        return fluid.layers.sequence_pool(input=emb, pool_type='sum')


class CNNEncoder(object):
    """ cnn-encoder"""

    def __init__(self,
                 param_name="cnn",
                 win_size=3,
                 ksize=128,
                 act='tanh',
                 pool_type='max'):
        self.param_name = param_name
        self.win_size = win_size
        self.ksize = ksize
        self.act = act
        self.pool_type = pool_type

    def forward(self, emb):
        return fluid.nets.sequence_conv_pool(
            input=emb,
            num_filters=self.ksize,
            filter_size=self.win_size,
            act=self.act,
            pool_type=self.pool_type,
            param_attr=self.param_name + ".param",
            bias_attr=self.param_name + ".bias")


class GrnnEncoder(object):
    """ grnn-encoder """

    def __init__(self, param_name="grnn", hidden_size=128):
        self.param_name = param_name
        self.hidden_size = hidden_size

    def forward(self, emb):
        fc0 = fluid.layers.fc(input=emb,
                              size=self.hidden_size * 3,
                              param_attr=self.param_name + "_fc.w",
                              bias_attr=False)

        gru_h = fluid.layers.dynamic_gru(
            input=fc0,
            size=self.hidden_size,
            is_reverse=False,
            param_attr=self.param_name + ".param",
            bias_attr=self.param_name + ".bias")
        return fluid.layers.sequence_pool(input=gru_h, pool_type='max')


class SimpleEncoderFactory(object):
    def __init__(self):
        pass

    ''' create an encoder through create function '''

    def create(self, enc_type, enc_hid_size):
        if enc_type == "bow":
            bow_encode = BowEncoder()
            return bow_encode
        elif enc_type == "cnn":
            cnn_encode = CNNEncoder(ksize=enc_hid_size)
            return cnn_encode
        elif enc_type == "gru":
            rnn_encode = GrnnEncoder(hidden_size=enc_hid_size)
            return rnn_encode

class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)
        self.init_config()
        
    def init_config(self):
        self._fetch_interval = 1 
        query_encoder = envs.get_global_env("hyper_parameters.query_encoder", None, self._namespace)
        title_encoder = envs.get_global_env("hyper_parameters.title_encoder", None, self._namespace)
        query_encode_dim = envs.get_global_env("hyper_parameters.query_encode_dim", None, self._namespace)
        title_encode_dim = envs.get_global_env("hyper_parameters.title_encode_dim", None, self._namespace)
        query_slots = envs.get_global_env("hyper_parameters.query_slots", None, self._namespace)
        title_slots = envs.get_global_env("hyper_parameters.title_slots", None, self._namespace)
        factory = SimpleEncoderFactory()
        self.query_encoders = [
            factory.create(query_encoder, query_encode_dim)
            for i in range(query_slots)
        ]
	self.title_encoders = [
            factory.create(title_encoder, title_encode_dim)
            for i in range(title_slots)
        ]

	self.emb_size = envs.get_global_env("hyper_parameters.sparse_feature_dim", None, self._namespace)
	self.emb_dim = envs.get_global_env("hyper_parameters.embedding_dim", None, self._namespace)
	self.emb_shape = [self.emb_size, self.emb_dim]
	self.hidden_size = envs.get_global_env("hyper_parameters.hidden_size", None, self._namespace)
	self.margin = 0.1

    def input(self, is_train=True):
	self.q_slots = [
            fluid.data(
M
debug  
malin10 已提交
132
                name="%d" % i, shape=[None, 1], lod_level=1, dtype='int64')
M
malin10 已提交
133 134 135 136
            for i in range(len(self.query_encoders))
        ]
        self.pt_slots = [
            fluid.data(
M
debug  
malin10 已提交
137
                name="%d" % (i + len(self.query_encoders)), shape=[None, 1], lod_level=1, dtype='int64')
M
malin10 已提交
138 139 140 141 142 143 144 145
            for i in range(len(self.title_encoders))
        ]

	if is_train == False:
	    return self.q_slots + self.pt_slots

        self.nt_slots = [
            fluid.data(
M
debug  
malin10 已提交
146
                name="%d" % (i + len(self.query_encoders) + len(self.title_encoders)), shape=[None, 1], lod_level=1, dtype='int64')
M
malin10 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
            for i in range(len(self.title_encoders))
        ]

        return self.q_slots + self.pt_slots + self.nt_slots
    
    def train_input(self):
        res = self.input()
        self._data_var = res

        use_dataloader = envs.get_global_env("hyper_parameters.use_DataLoader", False, self._namespace) 

        if self._platform != "LINUX" or use_dataloader:
            self._data_loader = fluid.io.DataLoader.from_generator(
                feed_list=self._data_var, capacity=256, use_double_buffer=False, iterable=False)

    def get_acc(self, x, y):
        less = tensor.cast(cf.less_than(x, y), dtype='float32')
	label_ones = fluid.layers.fill_constant_batch_size_like(
            input=x, dtype='float32', shape=[-1, 1], value=1.0)
        correct = fluid.layers.reduce_sum(less)
	total = fluid.layers.reduce_sum(label_ones)
        acc = fluid.layers.elementwise_div(correct, total)
	return acc

    def net(self):
	q_embs = [
            fluid.embedding(
                input=query, size=self.emb_shape, param_attr="emb")
            for query in self.q_slots
        ]
        pt_embs = [
            fluid.embedding(
                input=title, size=self.emb_shape, param_attr="emb")
            for title in self.pt_slots
        ]
        nt_embs = [
            fluid.embedding(
                input=title, size=self.emb_shape, param_attr="emb")
            for title in self.nt_slots
        ]
        
	# encode each embedding field with encoder
        q_encodes = [
            self.query_encoders[i].forward(emb) for i, emb in enumerate(q_embs)
        ]
        pt_encodes = [
            self.title_encoders[i].forward(emb) for i, emb in enumerate(pt_embs)
        ]
        nt_encodes = [
            self.title_encoders[i].forward(emb) for i, emb in enumerate(nt_embs)
        ]

        # concat multi view for query, pos_title, neg_title
        q_concat = fluid.layers.concat(q_encodes)
        pt_concat = fluid.layers.concat(pt_encodes)
        nt_concat = fluid.layers.concat(nt_encodes)

	# projection of hidden layer
        q_hid = fluid.layers.fc(q_concat,
                                size=self.hidden_size,
                                param_attr='q_fc.w',
                                bias_attr='q_fc.b')
        pt_hid = fluid.layers.fc(pt_concat,
                                 size=self.hidden_size,
                                 param_attr='t_fc.w',
                                 bias_attr='t_fc.b')
        nt_hid = fluid.layers.fc(nt_concat,
                                 size=self.hidden_size,
                                 param_attr='t_fc.w',
                                 bias_attr='t_fc.b')

        # cosine of hidden layers
        cos_pos = fluid.layers.cos_sim(q_hid, pt_hid)
        cos_neg = fluid.layers.cos_sim(q_hid, nt_hid)

	# pairwise hinge_loss
        loss_part1 = fluid.layers.elementwise_sub(
            tensor.fill_constant_batch_size_like(
                input=cos_pos,
                shape=[-1, 1],
                value=self.margin,
                dtype='float32'),
            cos_pos)

        loss_part2 = fluid.layers.elementwise_add(loss_part1, cos_neg)

        loss_part3 = fluid.layers.elementwise_max(
            tensor.fill_constant_batch_size_like(
                input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'),
            loss_part2)

        self.avg_cost = fluid.layers.mean(loss_part3)
       	self.acc = self.get_acc(cos_neg, cos_pos)	

    def avg_loss(self):
        self._cost = self.avg_cost

    def metrics(self):
        self._metrics["loss"] = self.avg_cost
        self._metrics["acc"] = self.acc

    def train_net(self):
        self.train_input()
        self.net()
        self.avg_loss()
        self.metrics()

    def optimizer(self):
        learning_rate = envs.get_global_env("hyper_parameters.learning_rate", None, self._namespace)
	optimizer = fluid.optimizer.Adam(learning_rate=learning_rate)
	return optimizer

    def infer_input(self):
        res = self.input(is_train=False)
	self._infer_data_var = res

        self._infer_data_loader = fluid.io.DataLoader.from_generator(
            feed_list=self._infer_data_var, capacity=64, use_double_buffer=False, iterable=False)
 
    def infer_net(self):
	self.infer_input()
	# lookup embedding for each slot
        q_embs = [
            fluid.embedding(
                input=query, size=self.emb_shape, param_attr="emb")
            for query in self.q_slots
        ]
        pt_embs = [
            fluid.embedding(
                input=title, size=self.emb_shape, param_attr="emb")
            for title in self.pt_slots
        ]
	# encode each embedding field with encoder
        q_encodes = [
            self.query_encoders[i].forward(emb) for i, emb in enumerate(q_embs)
        ]
        pt_encodes = [
            self.title_encoders[i].forward(emb) for i, emb in enumerate(pt_embs)
        ]
	# concat multi view for query, pos_title, neg_title
        q_concat = fluid.layers.concat(q_encodes)
        pt_concat = fluid.layers.concat(pt_encodes)
        # projection of hidden layer
        q_hid = fluid.layers.fc(q_concat,
                                size=self.hidden_size,
                                param_attr='q_fc.w',
                                bias_attr='q_fc.b')
        pt_hid = fluid.layers.fc(pt_concat,
                                 size=self.hidden_size,
                                 param_attr='t_fc.w',
                                 bias_attr='t_fc.b')

        # cosine of hidden layers
        cos = fluid.layers.cos_sim(q_hid, pt_hid)
        self._infer_results['query_pt_sim'] = cos