# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import math import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.layers.tensor as tensor import paddle.fluid.layers.control_flow as cf from paddlerec.core.utils import envs from paddlerec.core.model import Model as ModelBase class BowEncoder(object): """ bow-encoder """ def __init__(self): self.param_name = "" def forward(self, emb): return fluid.layers.sequence_pool(input=emb, pool_type='sum') class CNNEncoder(object): """ cnn-encoder""" def __init__(self, param_name="cnn", win_size=3, ksize=128, act='tanh', pool_type='max'): self.param_name = param_name self.win_size = win_size self.ksize = ksize self.act = act self.pool_type = pool_type def forward(self, emb): return fluid.nets.sequence_conv_pool( input=emb, num_filters=self.ksize, filter_size=self.win_size, act=self.act, pool_type=self.pool_type, param_attr=self.param_name + ".param", bias_attr=self.param_name + ".bias") class GrnnEncoder(object): """ grnn-encoder """ def __init__(self, param_name="grnn", hidden_size=128): self.param_name = param_name self.hidden_size = hidden_size def forward(self, emb): fc0 = fluid.layers.fc(input=emb, size=self.hidden_size * 3, param_attr=self.param_name + "_fc.w", bias_attr=False) gru_h = fluid.layers.dynamic_gru( input=fc0, size=self.hidden_size, is_reverse=False, param_attr=self.param_name + ".param", bias_attr=self.param_name + ".bias") return fluid.layers.sequence_pool(input=gru_h, pool_type='max') class SimpleEncoderFactory(object): def __init__(self): pass ''' create an encoder through create function ''' def create(self, enc_type, enc_hid_size): if enc_type == "bow": bow_encode = BowEncoder() return bow_encode elif enc_type == "cnn": cnn_encode = CNNEncoder(ksize=enc_hid_size) return cnn_encode elif enc_type == "gru": rnn_encode = GrnnEncoder(hidden_size=enc_hid_size) return rnn_encode class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) self.init_config() def init_config(self): self._fetch_interval = 1 query_encoder = envs.get_global_env("hyper_parameters.query_encoder", None, self._namespace) title_encoder = envs.get_global_env("hyper_parameters.title_encoder", None, self._namespace) query_encode_dim = envs.get_global_env("hyper_parameters.query_encode_dim", None, self._namespace) title_encode_dim = envs.get_global_env("hyper_parameters.title_encode_dim", None, self._namespace) query_slots = envs.get_global_env("hyper_parameters.query_slots", None, self._namespace) title_slots = envs.get_global_env("hyper_parameters.title_slots", None, self._namespace) factory = SimpleEncoderFactory() self.query_encoders = [ factory.create(query_encoder, query_encode_dim) for i in range(query_slots) ] self.title_encoders = [ factory.create(title_encoder, title_encode_dim) for i in range(title_slots) ] self.emb_size = envs.get_global_env("hyper_parameters.sparse_feature_dim", None, self._namespace) self.emb_dim = envs.get_global_env("hyper_parameters.embedding_dim", None, self._namespace) self.emb_shape = [self.emb_size, self.emb_dim] self.hidden_size = envs.get_global_env("hyper_parameters.hidden_size", None, self._namespace) self.margin = 0.1 def input(self, is_train=True): self.q_slots = [ fluid.data( name="%d" % i, shape=[None, 1], lod_level=1, dtype='int64') for i in range(len(self.query_encoders)) ] self.pt_slots = [ fluid.data( name="%d" % (i + len(self.query_encoders)), shape=[None, 1], lod_level=1, dtype='int64') for i in range(len(self.title_encoders)) ] if is_train == False: return self.q_slots + self.pt_slots self.nt_slots = [ fluid.data( name="%d" % (i + len(self.query_encoders) + len(self.title_encoders)), shape=[None, 1], lod_level=1, dtype='int64') for i in range(len(self.title_encoders)) ] return self.q_slots + self.pt_slots + self.nt_slots def train_input(self): res = self.input() self._data_var = res use_dataloader = envs.get_global_env("hyper_parameters.use_DataLoader", False, self._namespace) if self._platform != "LINUX" or use_dataloader: self._data_loader = fluid.io.DataLoader.from_generator( feed_list=self._data_var, capacity=256, use_double_buffer=False, iterable=False) def get_acc(self, x, y): less = tensor.cast(cf.less_than(x, y), dtype='float32') label_ones = fluid.layers.fill_constant_batch_size_like( input=x, dtype='float32', shape=[-1, 1], value=1.0) correct = fluid.layers.reduce_sum(less) total = fluid.layers.reduce_sum(label_ones) acc = fluid.layers.elementwise_div(correct, total) return acc def net(self): q_embs = [ fluid.embedding( input=query, size=self.emb_shape, param_attr="emb") for query in self.q_slots ] pt_embs = [ fluid.embedding( input=title, size=self.emb_shape, param_attr="emb") for title in self.pt_slots ] nt_embs = [ fluid.embedding( input=title, size=self.emb_shape, param_attr="emb") for title in self.nt_slots ] # encode each embedding field with encoder q_encodes = [ self.query_encoders[i].forward(emb) for i, emb in enumerate(q_embs) ] pt_encodes = [ self.title_encoders[i].forward(emb) for i, emb in enumerate(pt_embs) ] nt_encodes = [ self.title_encoders[i].forward(emb) for i, emb in enumerate(nt_embs) ] # concat multi view for query, pos_title, neg_title q_concat = fluid.layers.concat(q_encodes) pt_concat = fluid.layers.concat(pt_encodes) nt_concat = fluid.layers.concat(nt_encodes) # projection of hidden layer q_hid = fluid.layers.fc(q_concat, size=self.hidden_size, param_attr='q_fc.w', bias_attr='q_fc.b') pt_hid = fluid.layers.fc(pt_concat, size=self.hidden_size, param_attr='t_fc.w', bias_attr='t_fc.b') nt_hid = fluid.layers.fc(nt_concat, size=self.hidden_size, param_attr='t_fc.w', bias_attr='t_fc.b') # cosine of hidden layers cos_pos = fluid.layers.cos_sim(q_hid, pt_hid) cos_neg = fluid.layers.cos_sim(q_hid, nt_hid) # pairwise hinge_loss loss_part1 = fluid.layers.elementwise_sub( tensor.fill_constant_batch_size_like( input=cos_pos, shape=[-1, 1], value=self.margin, dtype='float32'), cos_pos) loss_part2 = fluid.layers.elementwise_add(loss_part1, cos_neg) loss_part3 = fluid.layers.elementwise_max( tensor.fill_constant_batch_size_like( input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'), loss_part2) self.avg_cost = fluid.layers.mean(loss_part3) self.acc = self.get_acc(cos_neg, cos_pos) def avg_loss(self): self._cost = self.avg_cost def metrics(self): self._metrics["loss"] = self.avg_cost self._metrics["acc"] = self.acc def train_net(self): self.train_input() self.net() self.avg_loss() self.metrics() def optimizer(self): learning_rate = envs.get_global_env("hyper_parameters.learning_rate", None, self._namespace) optimizer = fluid.optimizer.Adam(learning_rate=learning_rate) return optimizer def infer_input(self): res = self.input(is_train=False) self._infer_data_var = res self._infer_data_loader = fluid.io.DataLoader.from_generator( feed_list=self._infer_data_var, capacity=64, use_double_buffer=False, iterable=False) def infer_net(self): self.infer_input() # lookup embedding for each slot q_embs = [ fluid.embedding( input=query, size=self.emb_shape, param_attr="emb") for query in self.q_slots ] pt_embs = [ fluid.embedding( input=title, size=self.emb_shape, param_attr="emb") for title in self.pt_slots ] # encode each embedding field with encoder q_encodes = [ self.query_encoders[i].forward(emb) for i, emb in enumerate(q_embs) ] pt_encodes = [ self.title_encoders[i].forward(emb) for i, emb in enumerate(pt_embs) ] # concat multi view for query, pos_title, neg_title q_concat = fluid.layers.concat(q_encodes) pt_concat = fluid.layers.concat(pt_encodes) # projection of hidden layer q_hid = fluid.layers.fc(q_concat, size=self.hidden_size, param_attr='q_fc.w', bias_attr='q_fc.b') pt_hid = fluid.layers.fc(pt_concat, size=self.hidden_size, param_attr='t_fc.w', bias_attr='t_fc.b') # cosine of hidden layers cos = fluid.layers.cos_sim(q_hid, pt_hid) self._infer_results['query_pt_sim'] = cos