rec_model.py 9.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid

from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from copy import deepcopy


class RecModel(object):
T
tink2123 已提交
28 29 30 31 32 33
    """
    Rec model architecture
    Args:
        params(object): Params from yaml file and settings from command line
    """

L
LDOUBLEV 已提交
34 35 36 37 38
    def __init__(self, params):
        super(RecModel, self).__init__()
        global_params = params['Global']
        char_num = global_params['char_ops'].get_char_num()
        global_params['char_num'] = char_num
T
tink2123 已提交
39
        self.char_type = global_params['character_type']
T
tink2123 已提交
40
        self.infer_img = global_params['infer_img']
L
LDOUBLEV 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
        if "TPS" in params:
            tps_params = deepcopy(params["TPS"])
            tps_params.update(global_params)
            self.tps = create_module(tps_params['function'])\
                (params=tps_params)
        else:
            self.tps = None

        backbone_params = deepcopy(params["Backbone"])
        backbone_params.update(global_params)
        self.backbone = create_module(backbone_params['function'])\
                (params=backbone_params)

        head_params = deepcopy(params["Head"])
        head_params.update(global_params)
        self.head = create_module(head_params['function'])\
                (params=head_params)

        loss_params = deepcopy(params["Loss"])
        loss_params.update(global_params)
        self.loss = create_module(loss_params['function'])\
                (params=loss_params)

        self.loss_type = global_params['loss_type']
        self.image_shape = global_params['image_shape']
        self.max_text_length = global_params['max_text_length']
T
fix bug  
tink2123 已提交
67
        if "num_heads" in global_params:
T
tink2123 已提交
68 69 70
            self.num_heads = global_params["num_heads"]
        else:
            self.num_heads = None
L
LDOUBLEV 已提交
71 72

    def create_feed(self, mode):
T
tink2123 已提交
73 74 75 76 77 78
        """
        Create feed dict and DataLoader object
        Args:
            mode(str): runtime mode, can be "train", "eval" or "test"
        Return: image, labels, loader
        """
L
LDOUBLEV 已提交
79 80 81
        image_shape = deepcopy(self.image_shape)
        image_shape.insert(0, -1)
        if mode == "train":
T
tink2123 已提交
82
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
B
baiyfbupt 已提交
83
            image.stop_gradient = False
L
LDOUBLEV 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96
            if self.loss_type == "attention":
                label_in = fluid.data(
                    name='label_in',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                label_out = fluid.data(
                    name='label_out',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                feed_list = [image, label_in, label_out]
                labels = {'label_in': label_in, 'label_out': label_out}
T
tink2123 已提交
97
            elif self.loss_type == "srn":
T
tink2123 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
                encoder_word_pos = fluid.data(
                    name="encoder_word_pos",
                    shape=[
                        -1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)),
                        1
                    ],
                    dtype="int64")
                gsrm_word_pos = fluid.data(
                    name="gsrm_word_pos",
                    shape=[-1, self.max_text_length, 1],
                    dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(
                    name="gsrm_slf_attn_bias1",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
T
tink2123 已提交
114 115
                    ],
                    dtype="float32")
T
tink2123 已提交
116 117 118 119 120
                gsrm_slf_attn_bias2 = fluid.data(
                    name="gsrm_slf_attn_bias2",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
T
tink2123 已提交
121 122
                    ],
                    dtype="float32")
T
tink2123 已提交
123 124
                lbl_weight = fluid.layers.data(
                    name="lbl_weight", shape=[-1, 1], dtype='int64')
T
tink2123 已提交
125 126
                label = fluid.data(
                    name='label', shape=[-1, 1], dtype='int32', lod_level=1)
T
tink2123 已提交
127 128 129 130 131 132 133 134 135 136 137 138
                feed_list = [
                    image, label, encoder_word_pos, gsrm_word_pos,
                    gsrm_slf_attn_bias1, gsrm_slf_attn_bias2, lbl_weight
                ]
                labels = {
                    'label': label,
                    'encoder_word_pos': encoder_word_pos,
                    'gsrm_word_pos': gsrm_word_pos,
                    'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
                    'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2,
                    'lbl_weight': lbl_weight
                }
L
LDOUBLEV 已提交
139 140 141 142 143 144 145 146 147 148 149
            else:
                label = fluid.data(
                    name='label', shape=[None, 1], dtype='int32', lod_level=1)
                feed_list = [image, label]
                labels = {'label': label}
            loader = fluid.io.DataLoader.from_generator(
                feed_list=feed_list,
                capacity=64,
                use_double_buffer=True,
                iterable=False)
        else:
T
tink2123 已提交
150 151
            labels = None
            loader = None
T
tink2123 已提交
152
            if self.char_type == "ch" and self.infer_img and self.loss_type != "srn":
T
tink2123 已提交
153 154 155 156 157
                image_shape[-1] = -1
                if self.tps != None:
                    logger.info(
                        "WARNRNG!!!\n"
                        "TPS does not support variable shape in chinese!"
T
tink2123 已提交
158
                        "We set img_shape to be the same , it may affect the inference effect"
T
tink2123 已提交
159
                    )
T
tink2123 已提交
160
                    image_shape = deepcopy(self.image_shape)
T
tink2123 已提交
161
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
B
baiyfbupt 已提交
162
            image.stop_gradient = False
T
tink2123 已提交
163
            if self.loss_type == "srn":
T
tink2123 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
                encoder_word_pos = fluid.data(
                    name="encoder_word_pos",
                    shape=[
                        -1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)),
                        1
                    ],
                    dtype="int64")
                gsrm_word_pos = fluid.data(
                    name="gsrm_word_pos",
                    shape=[-1, self.max_text_length, 1],
                    dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(
                    name="gsrm_slf_attn_bias1",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
T
tink2123 已提交
180 181
                    ],
                    dtype="float32")
T
tink2123 已提交
182 183 184 185 186
                gsrm_slf_attn_bias2 = fluid.data(
                    name="gsrm_slf_attn_bias2",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
T
tink2123 已提交
187 188
                    ],
                    dtype="float32")
T
tink2123 已提交
189 190 191 192 193 194
                labels = {
                    'encoder_word_pos': encoder_word_pos,
                    'gsrm_word_pos': gsrm_word_pos,
                    'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
                    'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2
                }
T
tink2123 已提交
195

L
LDOUBLEV 已提交
196 197 198 199 200 201 202 203
        return image, labels, loader

    def __call__(self, mode):
        image, labels, loader = self.create_feed(mode)
        if self.tps is None:
            inputs = image
        else:
            inputs = self.tps(image)
T
tink2123 已提交
204
        # backbone
L
LDOUBLEV 已提交
205
        conv_feas = self.backbone(inputs)
T
tink2123 已提交
206
        # predict
L
LDOUBLEV 已提交
207 208
        predicts = self.head(conv_feas, labels, mode)
        decoded_out = predicts['decoded_out']
T
tink2123 已提交
209
        # loss
L
LDOUBLEV 已提交
210 211 212 213 214 215
        if mode == "train":
            loss = self.loss(predicts, labels)
            if self.loss_type == "attention":
                label = labels['label_out']
            else:
                label = labels['label']
T
tink2123 已提交
216 217
            if self.loss_type == 'srn':
                total_loss, img_loss, word_loss = self.loss(predicts, labels)
T
tink2123 已提交
218 219 220 221 222 223 224
                outputs = {
                    'total_loss': total_loss,
                    'img_loss': img_loss,
                    'word_loss': word_loss,
                    'decoded_out': decoded_out,
                    'label': label
                }
T
tink2123 已提交
225 226 227
            else:
                outputs = {'total_loss':loss, 'decoded_out':\
                    decoded_out, 'label':label}
L
LDOUBLEV 已提交
228
            return loader, outputs
T
tink2123 已提交
229
        # export_model
L
LDOUBLEV 已提交
230
        elif mode == "export":
L
LDOUBLEV 已提交
231
            predict = predicts['predict']
D
dyning 已提交
232 233
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
T
tink2123 已提交
234
            if self.loss_type == "srn":
T
tink2123 已提交
235 236 237 238 239 240 241
                return [
                    image, labels, {
                        'decoded_out': decoded_out,
                        'predicts': predict
                    }
                ]

L
LDOUBLEV 已提交
242
            return [image, {'decoded_out': decoded_out, 'predicts': predict}]
T
tink2123 已提交
243
        # eval or test
L
LDOUBLEV 已提交
244
        else:
D
dyning 已提交
245 246 247
            predict = predicts['predict']
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
T
tink2123 已提交
248
            return loader, {'decoded_out': decoded_out, 'predicts': predict}