rec_model.py 9.2 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid

from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from copy import deepcopy


class RecModel(object):
    def __init__(self, params):
        super(RecModel, self).__init__()
        global_params = params['Global']
        char_num = global_params['char_ops'].get_char_num()
        global_params['char_num'] = char_num
T
tink2123 已提交
33
        self.char_type = global_params['character_type']
T
tink2123 已提交
34
        self.infer_img = global_params['infer_img']
L
LDOUBLEV 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
        if "TPS" in params:
            tps_params = deepcopy(params["TPS"])
            tps_params.update(global_params)
            self.tps = create_module(tps_params['function'])\
                (params=tps_params)
        else:
            self.tps = None

        backbone_params = deepcopy(params["Backbone"])
        backbone_params.update(global_params)
        self.backbone = create_module(backbone_params['function'])\
                (params=backbone_params)

        head_params = deepcopy(params["Head"])
        head_params.update(global_params)
        self.head = create_module(head_params['function'])\
                (params=head_params)

        loss_params = deepcopy(params["Loss"])
        loss_params.update(global_params)
        self.loss = create_module(loss_params['function'])\
                (params=loss_params)

        self.loss_type = global_params['loss_type']
        self.image_shape = global_params['image_shape']
        self.max_text_length = global_params['max_text_length']
T
tink2123 已提交
61 62 63 64
        if "num_heads" in params:
            self.num_heads = global_params["num_heads"]
        else:
            self.num_heads = None
L
LDOUBLEV 已提交
65 66 67 68 69

    def create_feed(self, mode):
        image_shape = deepcopy(self.image_shape)
        image_shape.insert(0, -1)
        if mode == "train":
T
tink2123 已提交
70
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
L
LDOUBLEV 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83
            if self.loss_type == "attention":
                label_in = fluid.data(
                    name='label_in',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                label_out = fluid.data(
                    name='label_out',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                feed_list = [image, label_in, label_out]
                labels = {'label_in': label_in, 'label_out': label_out}
T
tink2123 已提交
84
            elif self.loss_type == "srn":
T
tink2123 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
                encoder_word_pos = fluid.data(
                    name="encoder_word_pos",
                    shape=[
                        -1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)),
                        1
                    ],
                    dtype="int64")
                gsrm_word_pos = fluid.data(
                    name="gsrm_word_pos",
                    shape=[-1, self.max_text_length, 1],
                    dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(
                    name="gsrm_slf_attn_bias1",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
T
tink2123 已提交
101 102
                    ],
                    dtype="float32")
T
tink2123 已提交
103 104 105 106 107
                gsrm_slf_attn_bias2 = fluid.data(
                    name="gsrm_slf_attn_bias2",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
T
tink2123 已提交
108 109
                    ],
                    dtype="float32")
T
tink2123 已提交
110 111
                lbl_weight = fluid.layers.data(
                    name="lbl_weight", shape=[-1, 1], dtype='int64')
T
tink2123 已提交
112 113
                label = fluid.data(
                    name='label', shape=[-1, 1], dtype='int32', lod_level=1)
T
tink2123 已提交
114 115 116 117 118 119 120 121 122 123 124 125
                feed_list = [
                    image, label, encoder_word_pos, gsrm_word_pos,
                    gsrm_slf_attn_bias1, gsrm_slf_attn_bias2, lbl_weight
                ]
                labels = {
                    'label': label,
                    'encoder_word_pos': encoder_word_pos,
                    'gsrm_word_pos': gsrm_word_pos,
                    'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
                    'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2,
                    'lbl_weight': lbl_weight
                }
L
LDOUBLEV 已提交
126 127 128 129 130 131 132 133 134 135 136
            else:
                label = fluid.data(
                    name='label', shape=[None, 1], dtype='int32', lod_level=1)
                feed_list = [image, label]
                labels = {'label': label}
            loader = fluid.io.DataLoader.from_generator(
                feed_list=feed_list,
                capacity=64,
                use_double_buffer=True,
                iterable=False)
        else:
T
tink2123 已提交
137 138
            labels = None
            loader = None
T
tink2123 已提交
139
            if self.char_type == "ch" and self.infer_img:
T
tink2123 已提交
140 141 142 143 144
                image_shape[-1] = -1
                if self.tps != None:
                    logger.info(
                        "WARNRNG!!!\n"
                        "TPS does not support variable shape in chinese!"
T
tink2123 已提交
145
                        "We set img_shape to be the same , it may affect the inference effect"
T
tink2123 已提交
146
                    )
T
tink2123 已提交
147
                    image_shape = deepcopy(self.image_shape)
T
tink2123 已提交
148
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
T
tink2123 已提交
149
            if self.loss_type == "srn":
T
tink2123 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
                encoder_word_pos = fluid.data(
                    name="encoder_word_pos",
                    shape=[
                        -1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)),
                        1
                    ],
                    dtype="int64")
                gsrm_word_pos = fluid.data(
                    name="gsrm_word_pos",
                    shape=[-1, self.max_text_length, 1],
                    dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(
                    name="gsrm_slf_attn_bias1",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
T
tink2123 已提交
166 167
                    ],
                    dtype="float32")
T
tink2123 已提交
168 169 170 171 172
                gsrm_slf_attn_bias2 = fluid.data(
                    name="gsrm_slf_attn_bias2",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
T
tink2123 已提交
173 174
                    ],
                    dtype="float32")
T
tink2123 已提交
175 176 177 178 179 180 181 182 183 184
                feed_list = [
                    image, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                    gsrm_slf_attn_bias2
                ]
                labels = {
                    'encoder_word_pos': encoder_word_pos,
                    'gsrm_word_pos': gsrm_word_pos,
                    'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
                    'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2
                }
L
LDOUBLEV 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        return image, labels, loader

    def __call__(self, mode):
        image, labels, loader = self.create_feed(mode)
        if self.tps is None:
            inputs = image
        else:
            inputs = self.tps(image)
        conv_feas = self.backbone(inputs)
        predicts = self.head(conv_feas, labels, mode)
        decoded_out = predicts['decoded_out']
        if mode == "train":
            loss = self.loss(predicts, labels)
            if self.loss_type == "attention":
                label = labels['label_out']
            else:
                label = labels['label']
T
tink2123 已提交
202 203
            if self.loss_type == 'srn':
                total_loss, img_loss, word_loss = self.loss(predicts, labels)
T
tink2123 已提交
204 205 206 207 208 209 210
                outputs = {
                    'total_loss': total_loss,
                    'img_loss': img_loss,
                    'word_loss': word_loss,
                    'decoded_out': decoded_out,
                    'label': label
                }
T
tink2123 已提交
211 212 213
            else:
                outputs = {'total_loss':loss, 'decoded_out':\
                    decoded_out, 'label':label}
L
LDOUBLEV 已提交
214
            return loader, outputs
T
tink2123 已提交
215

L
LDOUBLEV 已提交
216
        elif mode == "export":
L
LDOUBLEV 已提交
217
            predict = predicts['predict']
D
dyning 已提交
218 219
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
T
tink2123 已提交
220
            if self.loss_type == "srn":
T
tink2123 已提交
221
                raise Exception(
T
tink2123 已提交
222
                    "Warning! SRN does not support export model currently")
L
LDOUBLEV 已提交
223
            return [image, {'decoded_out': decoded_out, 'predicts': predict}]
L
LDOUBLEV 已提交
224
        else:
D
dyning 已提交
225 226 227
            predict = predicts['predict']
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
T
tink2123 已提交
228
            return loader, {'decoded_out': decoded_out, 'predicts': predict}