rec_model.py 8.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid

from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from copy import deepcopy


class RecModel(object):
    def __init__(self, params):
        super(RecModel, self).__init__()
        global_params = params['Global']
        char_num = global_params['char_ops'].get_char_num()
        global_params['char_num'] = char_num
T
tink2123 已提交
33
        self.char_type = global_params['character_type']
T
tink2123 已提交
34
        self.infer_img = global_params['infer_img']
L
LDOUBLEV 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
        if "TPS" in params:
            tps_params = deepcopy(params["TPS"])
            tps_params.update(global_params)
            self.tps = create_module(tps_params['function'])\
                (params=tps_params)
        else:
            self.tps = None

        backbone_params = deepcopy(params["Backbone"])
        backbone_params.update(global_params)
        self.backbone = create_module(backbone_params['function'])\
                (params=backbone_params)

        head_params = deepcopy(params["Head"])
        head_params.update(global_params)
        self.head = create_module(head_params['function'])\
                (params=head_params)

        loss_params = deepcopy(params["Loss"])
        loss_params.update(global_params)
        self.loss = create_module(loss_params['function'])\
                (params=loss_params)

        self.loss_type = global_params['loss_type']
        self.image_shape = global_params['image_shape']
        self.max_text_length = global_params['max_text_length']
T
tink2123 已提交
61
        self.num_heads = global_params["num_heads"]
L
LDOUBLEV 已提交
62 63 64 65 66

    def create_feed(self, mode):
        image_shape = deepcopy(self.image_shape)
        image_shape.insert(0, -1)
        if mode == "train":
T
tink2123 已提交
67
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
L
LDOUBLEV 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80
            if self.loss_type == "attention":
                label_in = fluid.data(
                    name='label_in',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                label_out = fluid.data(
                    name='label_out',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                feed_list = [image, label_in, label_out]
                labels = {'label_in': label_in, 'label_out': label_out}
T
tink2123 已提交
81
            elif self.loss_type == "srn":
T
tink2123 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
                encoder_word_pos = fluid.data(
                    name="encoder_word_pos",
                    shape=[
                        -1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)),
                        1
                    ],
                    dtype="int64")
                gsrm_word_pos = fluid.data(
                    name="gsrm_word_pos",
                    shape=[-1, self.max_text_length, 1],
                    dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(
                    name="gsrm_slf_attn_bias1",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
                    ])
                gsrm_slf_attn_bias2 = fluid.data(
                    name="gsrm_slf_attn_bias2",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
                    ])
                lbl_weight = fluid.layers.data(
                    name="lbl_weight", shape=[-1, 1], dtype='int64')
T
tink2123 已提交
107 108
                label = fluid.data(
                    name='label', shape=[-1, 1], dtype='int32', lod_level=1)
T
tink2123 已提交
109 110 111 112 113 114 115 116 117 118 119 120
                feed_list = [
                    image, label, encoder_word_pos, gsrm_word_pos,
                    gsrm_slf_attn_bias1, gsrm_slf_attn_bias2, lbl_weight
                ]
                labels = {
                    'label': label,
                    'encoder_word_pos': encoder_word_pos,
                    'gsrm_word_pos': gsrm_word_pos,
                    'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
                    'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2,
                    'lbl_weight': lbl_weight
                }
L
LDOUBLEV 已提交
121 122 123 124 125 126 127 128 129 130 131
            else:
                label = fluid.data(
                    name='label', shape=[None, 1], dtype='int32', lod_level=1)
                feed_list = [image, label]
                labels = {'label': label}
            loader = fluid.io.DataLoader.from_generator(
                feed_list=feed_list,
                capacity=64,
                use_double_buffer=True,
                iterable=False)
        else:
T
tink2123 已提交
132 133
            labels = None
            loader = None
T
tink2123 已提交
134
            if self.char_type == "ch" and self.infer_img:
T
tink2123 已提交
135 136 137 138 139
                image_shape[-1] = -1
                if self.tps != None:
                    logger.info(
                        "WARNRNG!!!\n"
                        "TPS does not support variable shape in chinese!"
T
tink2123 已提交
140
                        "We set img_shape to be the same , it may affect the inference effect"
T
tink2123 已提交
141
                    )
T
tink2123 已提交
142
                    image_shape = deepcopy(self.image_shape)
T
tink2123 已提交
143
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
T
tink2123 已提交
144
            if self.loss_type == "srn":
T
tink2123 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
                encoder_word_pos = fluid.data(
                    name="encoder_word_pos",
                    shape=[
                        -1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)),
                        1
                    ],
                    dtype="int64")
                gsrm_word_pos = fluid.data(
                    name="gsrm_word_pos",
                    shape=[-1, self.max_text_length, 1],
                    dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(
                    name="gsrm_slf_attn_bias1",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
                    ])
                gsrm_slf_attn_bias2 = fluid.data(
                    name="gsrm_slf_attn_bias2",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
                    ])
                feed_list = [
                    image, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                    gsrm_slf_attn_bias2
                ]
                labels = {
                    'encoder_word_pos': encoder_word_pos,
                    'gsrm_word_pos': gsrm_word_pos,
                    'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
                    'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2
                }
L
LDOUBLEV 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        return image, labels, loader

    def __call__(self, mode):
        image, labels, loader = self.create_feed(mode)
        if self.tps is None:
            inputs = image
        else:
            inputs = self.tps(image)
        conv_feas = self.backbone(inputs)
        predicts = self.head(conv_feas, labels, mode)
        decoded_out = predicts['decoded_out']
        if mode == "train":
            loss = self.loss(predicts, labels)
            if self.loss_type == "attention":
                label = labels['label_out']
            else:
                label = labels['label']
T
tink2123 已提交
195 196
            if self.loss_type == 'srn':
                total_loss, img_loss, word_loss = self.loss(predicts, labels)
T
tink2123 已提交
197 198 199 200 201 202 203
                outputs = {
                    'total_loss': total_loss,
                    'img_loss': img_loss,
                    'word_loss': word_loss,
                    'decoded_out': decoded_out,
                    'label': label
                }
T
tink2123 已提交
204 205 206
            else:
                outputs = {'total_loss':loss, 'decoded_out':\
                    decoded_out, 'label':label}
L
LDOUBLEV 已提交
207
            return loader, outputs
T
tink2123 已提交
208

L
LDOUBLEV 已提交
209
        elif mode == "export":
L
LDOUBLEV 已提交
210
            predict = predicts['predict']
D
dyning 已提交
211 212
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
L
LDOUBLEV 已提交
213
            return [image, {'decoded_out': decoded_out, 'predicts': predict}]
L
LDOUBLEV 已提交
214
        else:
D
dyning 已提交
215 216 217
            predict = predicts['predict']
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
T
tink2123 已提交
218
            return loader, {'decoded_out': decoded_out, 'predicts': predict}