label_ops.py 37.0 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import copy
W
WenmuZhou 已提交
21
import numpy as np
T
tink2123 已提交
22
import string
L
add kie  
LDOUBLEV 已提交
23
from shapely.geometry import LineString, Point, Polygon
L
LDOUBLEV 已提交
24
import json
A
andyjpaddle 已提交
25
import copy
L
LDOUBLEV 已提交
26
from scipy.spatial import distance as dist
T
tink2123 已提交
27 28
from ppocr.utils.logging import get_logger

W
WenmuZhou 已提交
29 30 31 32 33 34 35 36 37 38 39 40

class ClsLabelEncode(object):
    def __init__(self, label_list, **kwargs):
        self.label_list = label_list

    def __call__(self, data):
        label = data['label']
        if label not in self.label_list:
            return None
        label = self.label_list.index(label)
        data['label'] = label
        return data
W
WenmuZhou 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


class DetLabelEncode(object):
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
L
LDOUBLEV 已提交
61 62
        if len(boxes) == 0:
            return None
M
MissPenguin 已提交
63
        boxes = self.expand_points_num(boxes)
W
WenmuZhou 已提交
64 65 66 67 68 69 70 71 72
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
        data['ignore_tags'] = txt_tags
        return data

    def order_points_clockwise(self, pts):
L
LDOUBLEV 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        """
        refer to :https://github.com/PyImageSearch/imutils/blob/9f740a53bcc2ed7eba2558afed8b4c17fd8a1d4c/imutils/perspective.py#L9
        """
        # sort the points based on their x-coordinates
        xSorted = pts[np.argsort(pts[:, 0]), :]

        leftMost = xSorted[:2, :]
        rightMost = xSorted[2:, :]

        leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
        (tl, bl) = leftMost

        D = dist.cdist(tl[np.newaxis], rightMost, "euclidean")[0]
        (br, tr) = rightMost[np.argsort(D)[::-1], :]

        return np.array([tl, tr, br, bl], dtype="float32")
W
WenmuZhou 已提交
89

M
MissPenguin 已提交
90 91 92 93 94 95 96 97 98 99 100
    def expand_points_num(self, boxes):
        max_points_num = 0
        for box in boxes:
            if len(box) > max_points_num:
                max_points_num = len(box)
        ex_boxes = []
        for box in boxes:
            ex_box = box + [box[-1]] * (max_points_num - len(box))
            ex_boxes.append(ex_box)
        return ex_boxes

W
WenmuZhou 已提交
101 102 103 104 105 106 107 108 109 110

class BaseRecLabelEncode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False):

        self.max_text_len = max_text_length
T
tink2123 已提交
111 112
        self.beg_str = "sos"
        self.end_str = "eos"
T
tink2123 已提交
113
        self.lower = False
T
tink2123 已提交
114 115 116 117 118 119

        if character_dict_path is None:
            logger = get_logger()
            logger.warning(
                "The character_dict_path is None, model can only recognize number and lower letters"
            )
W
WenmuZhou 已提交
120 121
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
T
tink2123 已提交
122 123
            self.lower = True
        else:
124
            self.character_str = []
W
WenmuZhou 已提交
125 126 127 128
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
129
                    self.character_str.append(line)
W
WenmuZhou 已提交
130
            if use_space_char:
131
                self.character_str.append(" ")
W
WenmuZhou 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
            dict_character = list(self.character_str)
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
W
WenmuZhou 已提交
152
        if len(text) == 0 or len(text) > self.max_text_len:
W
WenmuZhou 已提交
153
            return None
T
tink2123 已提交
154
        if self.lower:
W
WenmuZhou 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                # logger = get_logger()
                # logger.warning('{} is not in dict'.format(char))
                continue
            text_list.append(self.dict[char])
        if len(text_list) == 0:
            return None
        return text_list


T
Topdu 已提交
168 169 170 171 172 173 174 175 176
class NRTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):

T
tink2123 已提交
177 178
        super(NRTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
179

T
Topdu 已提交
180 181 182 183 184
    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
T
Topdu 已提交
185 186
        if len(text) >= self.max_text_len - 1:
            return None
T
Topdu 已提交
187 188 189 190 191 192
        data['length'] = np.array(len(text))
        text.insert(0, 2)
        text.append(3)
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        return data
T
tink2123 已提交
193

T
Topdu 已提交
194
    def add_special_char(self, dict_character):
T
tink2123 已提交
195
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
T
Topdu 已提交
196 197
        return dict_character

T
tink2123 已提交
198

W
WenmuZhou 已提交
199 200 201 202 203 204 205 206
class CTCLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
207 208
        super(CTCLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
209 210 211 212 213 214 215 216 217

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        data['length'] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
218 219 220 221 222

        label = [0] * len(self.character)
        for x in text:
            label[x] += 1
        data['label_ace'] = np.array(label)
W
WenmuZhou 已提交
223 224 225 226 227 228 229
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


J
Jethong 已提交
230
class E2ELabelEncodeTest(BaseRecLabelEncode):
J
Jethong 已提交
231 232 233 234 235
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
236 237
        super(E2ELabelEncodeTest, self).__init__(
            max_text_length, character_dict_path, use_space_char)
J
Jethong 已提交
238 239

    def __call__(self, data):
J
Jethong 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        import json
        padnum = len(self.dict)
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
        data['polys'] = boxes
J
Jethong 已提交
258
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
259
        temp_texts = []
J
Jethong 已提交
260
        for text in txts:
J
Jethong 已提交
261
            text = text.lower()
J
Jethong 已提交
262 263 264
            text = self.encode(text)
            if text is None:
                return None
J
Jethong 已提交
265 266
            text = text + [padnum] * (self.max_text_len - len(text)
                                      )  # use 36 to pad
J
Jethong 已提交
267 268 269 270 271
            temp_texts.append(text)
        data['texts'] = np.array(temp_texts)
        return data


J
Jethong 已提交
272
class E2ELabelEncodeTrain(object):
J
Jethong 已提交
273 274
    def __init__(self, **kwargs):
        pass
J
Jethong 已提交
275 276

    def __call__(self, data):
J
Jethong 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        import json
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
J
Jethong 已提交
296
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
297 298 299
        return data


L
add kie  
LDOUBLEV 已提交
300 301 302 303
class KieLabelEncode(object):
    def __init__(self, character_dict_path, norm=10, directed=False, **kwargs):
        super(KieLabelEncode, self).__init__()
        self.dict = dict({'': 0})
L
fix win  
LDOUBLEV 已提交
304
        with open(character_dict_path, 'r', encoding='utf-8') as fr:
L
add kie  
LDOUBLEV 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
            idx = 1
            for line in fr:
                char = line.strip()
                self.dict[char] = idx
                idx += 1
        self.norm = norm
        self.directed = directed

    def compute_relation(self, boxes):
        """Compute relation between every two boxes."""
        x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
        x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
        ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
        dxs = (x1s[:, 0][None] - x1s) / self.norm
        dys = (y1s[:, 0][None] - y1s) / self.norm
        xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
        whs = ws / hs + np.zeros_like(xhhs)
        relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
        bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
        return relations, bboxes

    def pad_text_indices(self, text_inds):
        """Pad text index to same length."""
L
debug  
LDOUBLEV 已提交
328
        max_len = 300
L
add kie  
LDOUBLEV 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        recoder_len = max([len(text_ind) for text_ind in text_inds])
        padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
        for idx, text_ind in enumerate(text_inds):
            padded_text_inds[idx, :len(text_ind)] = np.array(text_ind)
        return padded_text_inds, recoder_len

    def list_to_numpy(self, ann_infos):
        """Convert bboxes, relations, texts and labels to ndarray."""
        boxes, text_inds = ann_infos['points'], ann_infos['text_inds']
        boxes = np.array(boxes, np.int32)
        relations, bboxes = self.compute_relation(boxes)

        labels = ann_infos.get('labels', None)
        if labels is not None:
            labels = np.array(labels, np.int32)
            edges = ann_infos.get('edges', None)
            if edges is not None:
                labels = labels[:, None]
                edges = np.array(edges)
                edges = (edges[:, None] == edges[None, :]).astype(np.int32)
                if self.directed:
                    edges = (edges & labels == 1).astype(np.int32)
                np.fill_diagonal(edges, -1)
                labels = np.concatenate([labels, edges], -1)
        padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
L
debug  
LDOUBLEV 已提交
354
        max_num = 300
L
add kie  
LDOUBLEV 已提交
355 356
        temp_bboxes = np.zeros([max_num, 4])
        h, _ = bboxes.shape
那珈落's avatar
那珈落 已提交
357
        temp_bboxes[:h, :] = bboxes
L
add kie  
LDOUBLEV 已提交
358 359 360 361

        temp_relations = np.zeros([max_num, max_num, 5])
        temp_relations[:h, :h, :] = relations

L
debug  
LDOUBLEV 已提交
362
        temp_padded_text_inds = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
363 364
        temp_padded_text_inds[:h, :] = padded_text_inds

L
debug  
LDOUBLEV 已提交
365
        temp_labels = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        temp_labels[:h, :h + 1] = labels

        tag = np.array([h, recoder_len])
        return dict(
            image=ann_infos['image'],
            points=temp_bboxes,
            relations=temp_relations,
            texts=temp_padded_text_inds,
            labels=temp_labels,
            tag=tag)

    def convert_canonical(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        points = [Point(points_x[i], points_y[i]) for i in range(4)]

        polygon = Polygon([(p.x, p.y) for p in points])
        min_x, min_y, _, _ = polygon.bounds
        points_to_lefttop = [
            LineString([points[i], Point(min_x, min_y)]) for i in range(4)
        ]
        distances = np.array([line.length for line in points_to_lefttop])
        sort_dist_idx = np.argsort(distances)
        lefttop_idx = sort_dist_idx[0]

        if lefttop_idx == 0:
            point_orders = [0, 1, 2, 3]
        elif lefttop_idx == 1:
            point_orders = [1, 2, 3, 0]
        elif lefttop_idx == 2:
            point_orders = [2, 3, 0, 1]
        else:
            point_orders = [3, 0, 1, 2]

        sorted_points_x = [points_x[i] for i in point_orders]
        sorted_points_y = [points_y[j] for j in point_orders]

        return sorted_points_x, sorted_points_y

    def sort_vertex(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        x = np.array(points_x)
        y = np.array(points_y)
        center_x = np.sum(x) * 0.25
        center_y = np.sum(y) * 0.25

        x_arr = np.array(x - center_x)
        y_arr = np.array(y - center_y)

        angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
        sort_idx = np.argsort(angle)

        sorted_points_x, sorted_points_y = [], []
        for i in range(4):
            sorted_points_x.append(points_x[sort_idx[i]])
            sorted_points_y.append(points_y[sort_idx[i]])

        return self.convert_canonical(sorted_points_x, sorted_points_y)

    def __call__(self, data):
        import json
        label = data['label']
        annotations = json.loads(label)
        boxes, texts, text_inds, labels, edges = [], [], [], [], []
        for ann in annotations:
            box = ann['points']
            x_list = [box[i][0] for i in range(4)]
            y_list = [box[i][1] for i in range(4)]
            sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
            sorted_box = []
            for x, y in zip(sorted_x_list, sorted_y_list):
                sorted_box.append(x)
                sorted_box.append(y)
            boxes.append(sorted_box)
            text = ann['transcription']
            texts.append(ann['transcription'])
            text_ind = [self.dict[c] for c in text if c in self.dict]
            text_inds.append(text_ind)
D
Double_V 已提交
449 450 451 452 453
            if 'label' in ann.keys():
                labels.append(ann['label'])
            elif 'key_cls' in ann.keys():
                labels.append(ann['key_cls'])
            else:
L
LDOUBLEV 已提交
454 455 456
                raise ValueError(
                    "Cannot found 'key_cls' in ann.keys(), please check your training annotation."
                )
L
add kie  
LDOUBLEV 已提交
457 458 459 460 461 462 463 464 465 466 467 468
            edges.append(ann.get('edge', 0))
        ann_infos = dict(
            image=data['image'],
            points=boxes,
            texts=texts,
            text_inds=text_inds,
            edges=edges,
            labels=labels)

        return self.list_to_numpy(ann_infos)


W
WenmuZhou 已提交
469 470 471 472 473 474 475 476
class AttnLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
477 478
        super(AttnLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
479 480

    def add_special_char(self, dict_character):
L
LDOUBLEV 已提交
481 482 483
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + dict_character + [self.end_str]
W
WenmuZhou 已提交
484 485
        return dict_character

L
LDOUBLEV 已提交
486 487
    def __call__(self, data):
        text = data['label']
W
WenmuZhou 已提交
488
        text = self.encode(text)
L
LDOUBLEV 已提交
489 490
        if text is None:
            return None
L
LDOUBLEV 已提交
491
        if len(text) >= self.max_text_len:
L
LDOUBLEV 已提交
492 493 494
            return None
        data['length'] = np.array(len(text))
        text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
T
tink2123 已提交
495
                                                               - len(text) - 2)
L
LDOUBLEV 已提交
496 497 498 499 500 501 502
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]
W
WenmuZhou 已提交
503 504 505 506 507 508 509 510 511 512

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
T
tink2123 已提交
513 514


T
tink2123 已提交
515 516 517 518 519 520 521 522
class SEEDLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
523 524
        super(SEEDLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
525 526

    def add_special_char(self, dict_character):
T
tink2123 已提交
527
        self.padding = "padding"
T
tink2123 已提交
528
        self.end_str = "eos"
T
tink2123 已提交
529 530 531 532
        self.unknown = "unknown"
        dict_character = dict_character + [
            self.end_str, self.padding, self.unknown
        ]
T
tink2123 已提交
533 534 535 536 537 538 539 540 541
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
T
rm anno  
tink2123 已提交
542
        data['length'] = np.array(len(text)) + 1  # conclude eos
T
tink2123 已提交
543 544
        text = text + [len(self.character) - 3] + [len(self.character) - 2] * (
            self.max_text_len - len(text) - 1)
T
tink2123 已提交
545 546 547 548
        data['label'] = np.array(text)
        return data


T
tink2123 已提交
549 550 551 552 553 554 555 556
class SRNLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length=25,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
557 558
        super(SRNLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
559 560 561 562 563 564 565 566

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
T
tink2123 已提交
567
        char_num = len(self.character)
T
tink2123 已提交
568 569 570 571 572
        if text is None:
            return None
        if len(text) > self.max_text_len:
            return None
        data['length'] = np.array(len(text))
T
tink2123 已提交
573
        text = text + [char_num - 1] * (self.max_text_len - len(text))
T
tink2123 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
M
MissPenguin 已提交
591

L
LDOUBLEV 已提交
592

M
MissPenguin 已提交
593 594
class TableLabelEncode(object):
    """ Convert between text-label and text-index """
L
LDOUBLEV 已提交
595 596 597 598 599 600 601 602

    def __init__(self,
                 max_text_length,
                 max_elem_length,
                 max_cell_num,
                 character_dict_path,
                 span_weight=1.0,
                 **kwargs):
M
MissPenguin 已提交
603 604 605
        self.max_text_length = max_text_length
        self.max_elem_length = max_elem_length
        self.max_cell_num = max_cell_num
L
LDOUBLEV 已提交
606 607
        list_character, list_elem = self.load_char_elem_dict(
            character_dict_path)
M
MissPenguin 已提交
608 609 610 611 612 613 614 615 616
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        for i, char in enumerate(list_character):
            self.dict_character[char] = i
        self.dict_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_elem[elem] = i
        self.span_weight = span_weight
L
LDOUBLEV 已提交
617

M
MissPenguin 已提交
618 619 620 621 622
    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
W
WenmuZhou 已提交
623
            substr = lines[0].decode('utf-8').strip("\r\n").split("\t")
M
MissPenguin 已提交
624 625
            character_num = int(substr[0])
            elem_num = int(substr[1])
L
LDOUBLEV 已提交
626
            for cno in range(1, 1 + character_num):
W
WenmuZhou 已提交
627
                character = lines[cno].decode('utf-8').strip("\r\n")
M
MissPenguin 已提交
628
                list_character.append(character)
L
LDOUBLEV 已提交
629
            for eno in range(1 + character_num, 1 + character_num + elem_num):
W
WenmuZhou 已提交
630
                elem = lines[eno].decode('utf-8').strip("\r\n")
M
MissPenguin 已提交
631 632
                list_elem.append(elem)
        return list_character, list_elem
L
LDOUBLEV 已提交
633

M
MissPenguin 已提交
634 635 636 637 638
    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character
L
LDOUBLEV 已提交
639

M
MissPenguin 已提交
640 641 642 643 644 645
    def get_span_idx_list(self):
        span_idx_list = []
        for elem in self.dict_elem:
            if 'span' in elem:
                span_idx_list.append(self.dict_elem[elem])
        return span_idx_list
L
LDOUBLEV 已提交
646

M
MissPenguin 已提交
647 648 649 650 651 652 653 654
    def __call__(self, data):
        cells = data['cells']
        structure = data['structure']['tokens']
        structure = self.encode(structure, 'elem')
        if structure is None:
            return None
        elem_num = len(structure)
        structure = [0] + structure + [len(self.dict_elem) - 1]
L
LDOUBLEV 已提交
655 656
        structure = structure + [0] * (self.max_elem_length + 2 - len(structure)
                                       )
M
MissPenguin 已提交
657 658 659 660 661
        structure = np.array(structure)
        data['structure'] = structure
        elem_char_idx1 = self.dict_elem['<td>']
        elem_char_idx2 = self.dict_elem['<td']
        span_idx_list = self.get_span_idx_list()
L
LDOUBLEV 已提交
662 663
        td_idx_list = np.logical_or(structure == elem_char_idx1,
                                    structure == elem_char_idx2)
M
MissPenguin 已提交
664
        td_idx_list = np.where(td_idx_list)[0]
L
LDOUBLEV 已提交
665 666 667

        structure_mask = np.ones(
            (self.max_elem_length + 2, 1), dtype=np.float32)
M
MissPenguin 已提交
668
        bbox_list = np.zeros((self.max_elem_length + 2, 4), dtype=np.float32)
L
LDOUBLEV 已提交
669 670
        bbox_list_mask = np.zeros(
            (self.max_elem_length + 2, 1), dtype=np.float32)
M
MissPenguin 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
        img_height, img_width, img_ch = data['image'].shape
        if len(span_idx_list) > 0:
            span_weight = len(td_idx_list) * 1.0 / len(span_idx_list)
            span_weight = min(max(span_weight, 1.0), self.span_weight)
        for cno in range(len(cells)):
            if 'bbox' in cells[cno]:
                bbox = cells[cno]['bbox'].copy()
                bbox[0] = bbox[0] * 1.0 / img_width
                bbox[1] = bbox[1] * 1.0 / img_height
                bbox[2] = bbox[2] * 1.0 / img_width
                bbox[3] = bbox[3] * 1.0 / img_height
                td_idx = td_idx_list[cno]
                bbox_list[td_idx] = bbox
                bbox_list_mask[td_idx] = 1.0
                cand_span_idx = td_idx + 1
                if cand_span_idx < (self.max_elem_length + 2):
                    if structure[cand_span_idx] in span_idx_list:
                        structure_mask[cand_span_idx] = span_weight

        data['bbox_list'] = bbox_list
        data['bbox_list_mask'] = bbox_list_mask
        data['structure_mask'] = structure_mask
        char_beg_idx = self.get_beg_end_flag_idx('beg', 'char')
        char_end_idx = self.get_beg_end_flag_idx('end', 'char')
        elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem')
        elem_end_idx = self.get_beg_end_flag_idx('end', 'elem')
L
LDOUBLEV 已提交
697 698 699 700 701
        data['sp_tokens'] = np.array([
            char_beg_idx, char_end_idx, elem_beg_idx, elem_end_idx,
            elem_char_idx1, elem_char_idx2, self.max_text_length,
            self.max_elem_length, self.max_cell_num, elem_num
        ])
M
MissPenguin 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
        return data

    def encode(self, text, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            max_len = self.max_text_length
            current_dict = self.dict_character
        else:
            max_len = self.max_elem_length
            current_dict = self.dict_elem
        if len(text) > max_len:
            return None
        if len(text) == 0:
            if char_or_elem == "char":
                return [self.dict_character['space']]
            else:
                return None
        text_list = []
        for char in text:
            if char not in current_dict:
                return None
            text_list.append(current_dict[char])
        if len(text_list) == 0:
            if char_or_elem == "char":
                return [self.dict_character['space']]
            else:
                return None
        return text_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = np.array(self.dict_character[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_character[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = np.array(self.dict_elem[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_elem[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
L
LDOUBLEV 已提交
753
                              % beg_or_end
M
MissPenguin 已提交
754 755
        else:
            assert False, "Unsupport type %s in char_or_elem" \
756
                % char_or_elem
M
MissPenguin 已提交
757
        return idx
A
andyjpaddle 已提交
758 759 760 761 762 763 764 765 766 767


class SARLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
768 769
        super(SARLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
A
andyjpaddle 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1

        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data['length'] = np.array(len(text))
        target = [self.start_idx] + text + [self.end_idx]
        padded_text = [self.padding_idx for _ in range(self.max_text_len)]
T
tink2123 已提交
795

A
andyjpaddle 已提交
796 797 798 799 800 801
        padded_text[:len(target)] = target
        data['label'] = np.array(padded_text)
        return data

    def get_ignored_tokens(self):
        return [self.padding_idx]
802 803


804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
class PRENLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path,
                 use_space_char=False,
                 **kwargs):
        super(PRENLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

    def add_special_char(self, dict_character):
        padding_str = '<PAD>'  # 0 
        end_str = '<EOS>'  # 1
        unknown_str = '<UNK>'  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def encode(self, text):
        if len(text) == 0 or len(text) >= self.max_text_len:
            return None
        if self.lower:
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                text_list.append(self.unknown_idx)
            else:
                text_list.append(self.dict[char])
        text_list.append(self.end_idx)
        if len(text_list) < self.max_text_len:
            text_list += [self.padding_idx] * (
                self.max_text_len - len(text_list))
        return text_list

    def __call__(self, data):
        text = data['label']
        encoded_text = self.encode(text)
        if encoded_text is None:
            return None
        data['label'] = np.array(encoded_text)
        return data


851 852
class VQATokenLabelEncode(object):
    """
文幕地方's avatar
文幕地方 已提交
853
    Label encode for NLP VQA methods
854 855 856 857 858 859 860 861 862 863 864
    """

    def __init__(self,
                 class_path,
                 contains_re=False,
                 add_special_ids=False,
                 algorithm='LayoutXLM',
                 infer_mode=False,
                 ocr_engine=None,
                 **kwargs):
        super(VQATokenLabelEncode, self).__init__()
文幕地方's avatar
文幕地方 已提交
865
        from paddlenlp.transformers import LayoutXLMTokenizer, LayoutLMTokenizer, LayoutLMv2Tokenizer
866 867 868 869 870 871 872 873 874
        from ppocr.utils.utility import load_vqa_bio_label_maps
        tokenizer_dict = {
            'LayoutXLM': {
                'class': LayoutXLMTokenizer,
                'pretrained_model': 'layoutxlm-base-uncased'
            },
            'LayoutLM': {
                'class': LayoutLMTokenizer,
                'pretrained_model': 'layoutlm-base-uncased'
文幕地方's avatar
文幕地方 已提交
875 876 877 878
            },
            'LayoutLMv2': {
                'class': LayoutLMv2Tokenizer,
                'pretrained_model': 'layoutlmv2-base-uncased'
879 880 881 882 883 884 885 886 887 888 889 890
            }
        }
        self.contains_re = contains_re
        tokenizer_config = tokenizer_dict[algorithm]
        self.tokenizer = tokenizer_config['class'].from_pretrained(
            tokenizer_config['pretrained_model'])
        self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path)
        self.add_special_ids = add_special_ids
        self.infer_mode = infer_mode
        self.ocr_engine = ocr_engine

    def __call__(self, data):
文幕地方's avatar
文幕地方 已提交
891 892
        # load bbox and label info
        ocr_info = self._load_ocr_info(data)
893

文幕地方's avatar
文幕地方 已提交
894
        height, width, _ = data['image'].shape
895 896 897 898 899

        words_list = []
        bbox_list = []
        input_ids_list = []
        token_type_ids_list = []
文幕地方's avatar
文幕地方 已提交
900
        segment_offset_id = []
901 902
        gt_label_list = []

文幕地方's avatar
文幕地方 已提交
903 904 905 906 907 908 909 910 911
        entities = []

        # for re
        train_re = self.contains_re and not self.infer_mode
        if train_re:
            relations = []
            id2label = {}
            entity_id_to_index_map = {}
            empty_entity = set()
文幕地方's avatar
文幕地方 已提交
912 913 914 915

        data['ocr_info'] = copy.deepcopy(ocr_info)

        for info in ocr_info:
文幕地方's avatar
文幕地方 已提交
916
            if train_re:
917 918 919 920 921 922
                # for re
                if len(info["text"]) == 0:
                    empty_entity.add(info["id"])
                    continue
                id2label[info["id"]] = info["label"]
                relations.extend([tuple(sorted(l)) for l in info["linking"]])
文幕地方's avatar
文幕地方 已提交
923 924
            # smooth_box
            bbox = self._smooth_box(info["bbox"], height, width)
925 926 927 928 929 930 931 932 933 934 935 936

            text = info["text"]
            encode_res = self.tokenizer.encode(
                text, pad_to_max_seq_len=False, return_attention_mask=True)

            if not self.add_special_ids:
                # TODO: use tok.all_special_ids to remove
                encode_res["input_ids"] = encode_res["input_ids"][1:-1]
                encode_res["token_type_ids"] = encode_res["token_type_ids"][1:
                                                                            -1]
                encode_res["attention_mask"] = encode_res["attention_mask"][1:
                                                                            -1]
文幕地方's avatar
文幕地方 已提交
937 938 939 940 941 942
            # parse label
            if not self.infer_mode:
                label = info['label']
                gt_label = self._parse_label(label, encode_res)

            # construct entities for re
文幕地方's avatar
文幕地方 已提交
943 944 945 946
            if train_re:
                if gt_label[0] != self.label2id_map["O"]:
                    entity_id_to_index_map[info["id"]] = len(entities)
                    label = label.upper()
947 948 949 950
                    entities.append({
                        "start": len(input_ids_list),
                        "end":
                        len(input_ids_list) + len(encode_res["input_ids"]),
文幕地方's avatar
文幕地方 已提交
951
                        "label": label.upper(),
952
                    })
文幕地方's avatar
文幕地方 已提交
953 954 955 956 957 958
            else:
                entities.append({
                    "start": len(input_ids_list),
                    "end": len(input_ids_list) + len(encode_res["input_ids"]),
                    "label": 'O',
                })
959 960 961 962
            input_ids_list.extend(encode_res["input_ids"])
            token_type_ids_list.extend(encode_res["token_type_ids"])
            bbox_list.extend([bbox] * len(encode_res["input_ids"]))
            words_list.append(text)
文幕地方's avatar
文幕地方 已提交
963 964 965 966 967 968 969 970 971 972
            segment_offset_id.append(len(input_ids_list))
            if not self.infer_mode:
                gt_label_list.extend(gt_label)

        data['input_ids'] = input_ids_list
        data['token_type_ids'] = token_type_ids_list
        data['bbox'] = bbox_list
        data['attention_mask'] = [1] * len(input_ids_list)
        data['labels'] = gt_label_list
        data['segment_offset_id'] = segment_offset_id
973 974 975 976
        data['tokenizer_params'] = dict(
            padding_side=self.tokenizer.padding_side,
            pad_token_type_id=self.tokenizer.pad_token_type_id,
            pad_token_id=self.tokenizer.pad_token_id)
文幕地方's avatar
文幕地方 已提交
977
        data['entities'] = entities
978

文幕地方's avatar
文幕地方 已提交
979 980 981 982 983
        if train_re:
            data['relations'] = relations
            data['id2label'] = id2label
            data['empty_entity'] = empty_entity
            data['entity_id_to_index_map'] = entity_id_to_index_map
984 985
        return data

文幕地方's avatar
文幕地方 已提交
986
    def _load_ocr_info(self, data):
文幕地方's avatar
文幕地方 已提交
987 988 989 990 991 992 993
        def trans_poly_to_bbox(poly):
            x1 = np.min([p[0] for p in poly])
            x2 = np.max([p[0] for p in poly])
            y1 = np.min([p[1] for p in poly])
            y2 = np.max([p[1] for p in poly])
            return [x1, y1, x2, y2]

文幕地方's avatar
文幕地方 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        if self.infer_mode:
            ocr_result = self.ocr_engine.ocr(data['image'], cls=False)
            ocr_info = []
            for res in ocr_result:
                ocr_info.append({
                    "text": res[1][0],
                    "bbox": trans_poly_to_bbox(res[0]),
                    "poly": res[0],
                })
            return ocr_info
        else:
            info = data['label']
            # read text info
            info_dict = json.loads(info)
            return info_dict["ocr_info"]

    def _smooth_box(self, bbox, height, width):
        bbox[0] = int(bbox[0] * 1000.0 / width)
        bbox[2] = int(bbox[2] * 1000.0 / width)
        bbox[1] = int(bbox[1] * 1000.0 / height)
        bbox[3] = int(bbox[3] * 1000.0 / height)
        return bbox

    def _parse_label(self, label, encode_res):
        gt_label = []
        if label.lower() == "other":
            gt_label.extend([0] * len(encode_res["input_ids"]))
        else:
            gt_label.append(self.label2id_map[("b-" + label).upper()])
            gt_label.extend([self.label2id_map[("i-" + label).upper()]] *
                            (len(encode_res["input_ids"]) - 1))
        return gt_label
A
andyjpaddle 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056


class MultiLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
        super(MultiLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

        self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)
        self.sar_encode = SARLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)

    def __call__(self, data):

        data_ctc = copy.deepcopy(data)
        data_sar = copy.deepcopy(data)
        data_out = dict()
        data_out['img_path'] = data.get('img_path', None)
        data_out['image'] = data['image']
        ctc = self.ctc_encode.__call__(data_ctc)
        sar = self.sar_encode.__call__(data_sar)
        if ctc is None or sar is None:
            return None
        data_out['label_ctc'] = ctc['label']
        data_out['label_sar'] = sar['label']
        data_out['length'] = ctc['length']
        return data_out