label_ops.py 36.6 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import copy
W
WenmuZhou 已提交
21
import numpy as np
T
tink2123 已提交
22
import string
L
add kie  
LDOUBLEV 已提交
23
from shapely.geometry import LineString, Point, Polygon
L
LDOUBLEV 已提交
24
import json
A
andyjpaddle 已提交
25
import copy
W
WenmuZhou 已提交
26

T
tink2123 已提交
27 28
from ppocr.utils.logging import get_logger

W
WenmuZhou 已提交
29 30 31 32 33 34 35 36 37 38 39 40

class ClsLabelEncode(object):
    def __init__(self, label_list, **kwargs):
        self.label_list = label_list

    def __call__(self, data):
        label = data['label']
        if label not in self.label_list:
            return None
        label = self.label_list.index(label)
        data['label'] = label
        return data
W
WenmuZhou 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


class DetLabelEncode(object):
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
L
LDOUBLEV 已提交
61 62
        if len(boxes) == 0:
            return None
M
MissPenguin 已提交
63
        boxes = self.expand_points_num(boxes)
W
WenmuZhou 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
        data['ignore_tags'] = txt_tags
        return data

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect

M
MissPenguin 已提交
82 83 84 85 86 87 88 89 90 91 92
    def expand_points_num(self, boxes):
        max_points_num = 0
        for box in boxes:
            if len(box) > max_points_num:
                max_points_num = len(box)
        ex_boxes = []
        for box in boxes:
            ex_box = box + [box[-1]] * (max_points_num - len(box))
            ex_boxes.append(ex_box)
        return ex_boxes

W
WenmuZhou 已提交
93 94 95 96 97 98 99 100 101 102

class BaseRecLabelEncode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False):

        self.max_text_len = max_text_length
T
tink2123 已提交
103 104
        self.beg_str = "sos"
        self.end_str = "eos"
T
tink2123 已提交
105
        self.lower = False
T
tink2123 已提交
106 107 108 109 110 111

        if character_dict_path is None:
            logger = get_logger()
            logger.warning(
                "The character_dict_path is None, model can only recognize number and lower letters"
            )
W
WenmuZhou 已提交
112 113
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
T
tink2123 已提交
114 115
            self.lower = True
        else:
116
            self.character_str = []
W
WenmuZhou 已提交
117 118 119 120
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
121
                    self.character_str.append(line)
W
WenmuZhou 已提交
122
            if use_space_char:
123
                self.character_str.append(" ")
W
WenmuZhou 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
            dict_character = list(self.character_str)
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
W
WenmuZhou 已提交
144
        if len(text) == 0 or len(text) > self.max_text_len:
W
WenmuZhou 已提交
145
            return None
T
tink2123 已提交
146
        if self.lower:
W
WenmuZhou 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                # logger = get_logger()
                # logger.warning('{} is not in dict'.format(char))
                continue
            text_list.append(self.dict[char])
        if len(text_list) == 0:
            return None
        return text_list


T
Topdu 已提交
160 161 162 163 164 165 166 167 168
class NRTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):

T
tink2123 已提交
169 170
        super(NRTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
171

T
Topdu 已提交
172 173 174 175 176
    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
T
Topdu 已提交
177 178
        if len(text) >= self.max_text_len - 1:
            return None
T
Topdu 已提交
179 180 181 182 183 184
        data['length'] = np.array(len(text))
        text.insert(0, 2)
        text.append(3)
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        return data
T
tink2123 已提交
185

T
Topdu 已提交
186
    def add_special_char(self, dict_character):
T
tink2123 已提交
187
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
T
Topdu 已提交
188 189
        return dict_character

T
tink2123 已提交
190

W
WenmuZhou 已提交
191 192 193 194 195 196 197 198
class CTCLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
199 200
        super(CTCLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
201 202 203 204 205 206 207 208 209

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        data['length'] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
210 211 212 213 214

        label = [0] * len(self.character)
        for x in text:
            label[x] += 1
        data['label_ace'] = np.array(label)
W
WenmuZhou 已提交
215 216 217 218 219 220 221
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


J
Jethong 已提交
222
class E2ELabelEncodeTest(BaseRecLabelEncode):
J
Jethong 已提交
223 224 225 226 227
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
228 229
        super(E2ELabelEncodeTest, self).__init__(
            max_text_length, character_dict_path, use_space_char)
J
Jethong 已提交
230 231

    def __call__(self, data):
J
Jethong 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        import json
        padnum = len(self.dict)
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
        data['polys'] = boxes
J
Jethong 已提交
250
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
251
        temp_texts = []
J
Jethong 已提交
252
        for text in txts:
J
Jethong 已提交
253
            text = text.lower()
J
Jethong 已提交
254 255 256
            text = self.encode(text)
            if text is None:
                return None
J
Jethong 已提交
257 258
            text = text + [padnum] * (self.max_text_len - len(text)
                                      )  # use 36 to pad
J
Jethong 已提交
259 260 261 262 263
            temp_texts.append(text)
        data['texts'] = np.array(temp_texts)
        return data


J
Jethong 已提交
264
class E2ELabelEncodeTrain(object):
J
Jethong 已提交
265 266
    def __init__(self, **kwargs):
        pass
J
Jethong 已提交
267 268

    def __call__(self, data):
J
Jethong 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        import json
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
J
Jethong 已提交
288
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
289 290 291
        return data


L
add kie  
LDOUBLEV 已提交
292 293 294 295
class KieLabelEncode(object):
    def __init__(self, character_dict_path, norm=10, directed=False, **kwargs):
        super(KieLabelEncode, self).__init__()
        self.dict = dict({'': 0})
L
fix win  
LDOUBLEV 已提交
296
        with open(character_dict_path, 'r', encoding='utf-8') as fr:
L
add kie  
LDOUBLEV 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
            idx = 1
            for line in fr:
                char = line.strip()
                self.dict[char] = idx
                idx += 1
        self.norm = norm
        self.directed = directed

    def compute_relation(self, boxes):
        """Compute relation between every two boxes."""
        x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
        x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
        ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
        dxs = (x1s[:, 0][None] - x1s) / self.norm
        dys = (y1s[:, 0][None] - y1s) / self.norm
        xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
        whs = ws / hs + np.zeros_like(xhhs)
        relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
        bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
        return relations, bboxes

    def pad_text_indices(self, text_inds):
        """Pad text index to same length."""
L
debug  
LDOUBLEV 已提交
320
        max_len = 300
L
add kie  
LDOUBLEV 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        recoder_len = max([len(text_ind) for text_ind in text_inds])
        padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
        for idx, text_ind in enumerate(text_inds):
            padded_text_inds[idx, :len(text_ind)] = np.array(text_ind)
        return padded_text_inds, recoder_len

    def list_to_numpy(self, ann_infos):
        """Convert bboxes, relations, texts and labels to ndarray."""
        boxes, text_inds = ann_infos['points'], ann_infos['text_inds']
        boxes = np.array(boxes, np.int32)
        relations, bboxes = self.compute_relation(boxes)

        labels = ann_infos.get('labels', None)
        if labels is not None:
            labels = np.array(labels, np.int32)
            edges = ann_infos.get('edges', None)
            if edges is not None:
                labels = labels[:, None]
                edges = np.array(edges)
                edges = (edges[:, None] == edges[None, :]).astype(np.int32)
                if self.directed:
                    edges = (edges & labels == 1).astype(np.int32)
                np.fill_diagonal(edges, -1)
                labels = np.concatenate([labels, edges], -1)
        padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
L
debug  
LDOUBLEV 已提交
346
        max_num = 300
L
add kie  
LDOUBLEV 已提交
347 348
        temp_bboxes = np.zeros([max_num, 4])
        h, _ = bboxes.shape
那珈落's avatar
那珈落 已提交
349
        temp_bboxes[:h, :] = bboxes
L
add kie  
LDOUBLEV 已提交
350 351 352 353

        temp_relations = np.zeros([max_num, max_num, 5])
        temp_relations[:h, :h, :] = relations

L
debug  
LDOUBLEV 已提交
354
        temp_padded_text_inds = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
355 356
        temp_padded_text_inds[:h, :] = padded_text_inds

L
debug  
LDOUBLEV 已提交
357
        temp_labels = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        temp_labels[:h, :h + 1] = labels

        tag = np.array([h, recoder_len])
        return dict(
            image=ann_infos['image'],
            points=temp_bboxes,
            relations=temp_relations,
            texts=temp_padded_text_inds,
            labels=temp_labels,
            tag=tag)

    def convert_canonical(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        points = [Point(points_x[i], points_y[i]) for i in range(4)]

        polygon = Polygon([(p.x, p.y) for p in points])
        min_x, min_y, _, _ = polygon.bounds
        points_to_lefttop = [
            LineString([points[i], Point(min_x, min_y)]) for i in range(4)
        ]
        distances = np.array([line.length for line in points_to_lefttop])
        sort_dist_idx = np.argsort(distances)
        lefttop_idx = sort_dist_idx[0]

        if lefttop_idx == 0:
            point_orders = [0, 1, 2, 3]
        elif lefttop_idx == 1:
            point_orders = [1, 2, 3, 0]
        elif lefttop_idx == 2:
            point_orders = [2, 3, 0, 1]
        else:
            point_orders = [3, 0, 1, 2]

        sorted_points_x = [points_x[i] for i in point_orders]
        sorted_points_y = [points_y[j] for j in point_orders]

        return sorted_points_x, sorted_points_y

    def sort_vertex(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        x = np.array(points_x)
        y = np.array(points_y)
        center_x = np.sum(x) * 0.25
        center_y = np.sum(y) * 0.25

        x_arr = np.array(x - center_x)
        y_arr = np.array(y - center_y)

        angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
        sort_idx = np.argsort(angle)

        sorted_points_x, sorted_points_y = [], []
        for i in range(4):
            sorted_points_x.append(points_x[sort_idx[i]])
            sorted_points_y.append(points_y[sort_idx[i]])

        return self.convert_canonical(sorted_points_x, sorted_points_y)

    def __call__(self, data):
        import json
        label = data['label']
        annotations = json.loads(label)
        boxes, texts, text_inds, labels, edges = [], [], [], [], []
        for ann in annotations:
            box = ann['points']
            x_list = [box[i][0] for i in range(4)]
            y_list = [box[i][1] for i in range(4)]
            sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
            sorted_box = []
            for x, y in zip(sorted_x_list, sorted_y_list):
                sorted_box.append(x)
                sorted_box.append(y)
            boxes.append(sorted_box)
            text = ann['transcription']
            texts.append(ann['transcription'])
            text_ind = [self.dict[c] for c in text if c in self.dict]
            text_inds.append(text_ind)
D
Double_V 已提交
441 442 443 444 445 446
            if 'label' in ann.keys():
                labels.append(ann['label'])
            elif 'key_cls' in ann.keys():
                labels.append(ann['key_cls'])
            else:
                raise ValueError("Cannot found 'key_cls' in ann.keys(), please check your training annotation.")
L
add kie  
LDOUBLEV 已提交
447 448 449 450 451 452 453 454 455 456 457 458
            edges.append(ann.get('edge', 0))
        ann_infos = dict(
            image=data['image'],
            points=boxes,
            texts=texts,
            text_inds=text_inds,
            edges=edges,
            labels=labels)

        return self.list_to_numpy(ann_infos)


W
WenmuZhou 已提交
459 460 461 462 463 464 465 466
class AttnLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
467 468
        super(AttnLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
469 470

    def add_special_char(self, dict_character):
L
LDOUBLEV 已提交
471 472 473
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + dict_character + [self.end_str]
W
WenmuZhou 已提交
474 475
        return dict_character

L
LDOUBLEV 已提交
476 477
    def __call__(self, data):
        text = data['label']
W
WenmuZhou 已提交
478
        text = self.encode(text)
L
LDOUBLEV 已提交
479 480
        if text is None:
            return None
L
LDOUBLEV 已提交
481
        if len(text) >= self.max_text_len:
L
LDOUBLEV 已提交
482 483 484
            return None
        data['length'] = np.array(len(text))
        text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
T
tink2123 已提交
485
                                                               - len(text) - 2)
L
LDOUBLEV 已提交
486 487 488 489 490 491 492
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]
W
WenmuZhou 已提交
493 494 495 496 497 498 499 500 501 502

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
T
tink2123 已提交
503 504


T
tink2123 已提交
505 506 507 508 509 510 511 512
class SEEDLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
513 514
        super(SEEDLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
515 516

    def add_special_char(self, dict_character):
T
tink2123 已提交
517
        self.padding = "padding"
T
tink2123 已提交
518
        self.end_str = "eos"
T
tink2123 已提交
519 520 521 522
        self.unknown = "unknown"
        dict_character = dict_character + [
            self.end_str, self.padding, self.unknown
        ]
T
tink2123 已提交
523 524 525 526 527 528 529 530 531
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
T
rm anno  
tink2123 已提交
532
        data['length'] = np.array(len(text)) + 1  # conclude eos
T
tink2123 已提交
533 534
        text = text + [len(self.character) - 3] + [len(self.character) - 2] * (
            self.max_text_len - len(text) - 1)
T
tink2123 已提交
535 536 537 538
        data['label'] = np.array(text)
        return data


T
tink2123 已提交
539 540 541 542 543 544 545 546
class SRNLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length=25,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
547 548
        super(SRNLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
549 550 551 552 553 554 555 556

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
T
tink2123 已提交
557
        char_num = len(self.character)
T
tink2123 已提交
558 559 560 561 562
        if text is None:
            return None
        if len(text) > self.max_text_len:
            return None
        data['length'] = np.array(len(text))
T
tink2123 已提交
563
        text = text + [char_num - 1] * (self.max_text_len - len(text))
T
tink2123 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
M
MissPenguin 已提交
581

L
LDOUBLEV 已提交
582

M
MissPenguin 已提交
583 584
class TableLabelEncode(object):
    """ Convert between text-label and text-index """
L
LDOUBLEV 已提交
585 586 587 588 589 590 591 592

    def __init__(self,
                 max_text_length,
                 max_elem_length,
                 max_cell_num,
                 character_dict_path,
                 span_weight=1.0,
                 **kwargs):
M
MissPenguin 已提交
593 594 595
        self.max_text_length = max_text_length
        self.max_elem_length = max_elem_length
        self.max_cell_num = max_cell_num
L
LDOUBLEV 已提交
596 597
        list_character, list_elem = self.load_char_elem_dict(
            character_dict_path)
M
MissPenguin 已提交
598 599 600 601 602 603 604 605 606
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        for i, char in enumerate(list_character):
            self.dict_character[char] = i
        self.dict_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_elem[elem] = i
        self.span_weight = span_weight
L
LDOUBLEV 已提交
607

M
MissPenguin 已提交
608 609 610 611 612
    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
W
WenmuZhou 已提交
613
            substr = lines[0].decode('utf-8').strip("\r\n").split("\t")
M
MissPenguin 已提交
614 615
            character_num = int(substr[0])
            elem_num = int(substr[1])
L
LDOUBLEV 已提交
616
            for cno in range(1, 1 + character_num):
W
WenmuZhou 已提交
617
                character = lines[cno].decode('utf-8').strip("\r\n")
M
MissPenguin 已提交
618
                list_character.append(character)
L
LDOUBLEV 已提交
619
            for eno in range(1 + character_num, 1 + character_num + elem_num):
W
WenmuZhou 已提交
620
                elem = lines[eno].decode('utf-8').strip("\r\n")
M
MissPenguin 已提交
621 622
                list_elem.append(elem)
        return list_character, list_elem
L
LDOUBLEV 已提交
623

M
MissPenguin 已提交
624 625 626 627 628
    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character
L
LDOUBLEV 已提交
629

M
MissPenguin 已提交
630 631 632 633 634 635
    def get_span_idx_list(self):
        span_idx_list = []
        for elem in self.dict_elem:
            if 'span' in elem:
                span_idx_list.append(self.dict_elem[elem])
        return span_idx_list
L
LDOUBLEV 已提交
636

M
MissPenguin 已提交
637 638 639 640 641 642 643 644
    def __call__(self, data):
        cells = data['cells']
        structure = data['structure']['tokens']
        structure = self.encode(structure, 'elem')
        if structure is None:
            return None
        elem_num = len(structure)
        structure = [0] + structure + [len(self.dict_elem) - 1]
L
LDOUBLEV 已提交
645 646
        structure = structure + [0] * (self.max_elem_length + 2 - len(structure)
                                       )
M
MissPenguin 已提交
647 648 649 650 651
        structure = np.array(structure)
        data['structure'] = structure
        elem_char_idx1 = self.dict_elem['<td>']
        elem_char_idx2 = self.dict_elem['<td']
        span_idx_list = self.get_span_idx_list()
L
LDOUBLEV 已提交
652 653
        td_idx_list = np.logical_or(structure == elem_char_idx1,
                                    structure == elem_char_idx2)
M
MissPenguin 已提交
654
        td_idx_list = np.where(td_idx_list)[0]
L
LDOUBLEV 已提交
655 656 657

        structure_mask = np.ones(
            (self.max_elem_length + 2, 1), dtype=np.float32)
M
MissPenguin 已提交
658
        bbox_list = np.zeros((self.max_elem_length + 2, 4), dtype=np.float32)
L
LDOUBLEV 已提交
659 660
        bbox_list_mask = np.zeros(
            (self.max_elem_length + 2, 1), dtype=np.float32)
M
MissPenguin 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
        img_height, img_width, img_ch = data['image'].shape
        if len(span_idx_list) > 0:
            span_weight = len(td_idx_list) * 1.0 / len(span_idx_list)
            span_weight = min(max(span_weight, 1.0), self.span_weight)
        for cno in range(len(cells)):
            if 'bbox' in cells[cno]:
                bbox = cells[cno]['bbox'].copy()
                bbox[0] = bbox[0] * 1.0 / img_width
                bbox[1] = bbox[1] * 1.0 / img_height
                bbox[2] = bbox[2] * 1.0 / img_width
                bbox[3] = bbox[3] * 1.0 / img_height
                td_idx = td_idx_list[cno]
                bbox_list[td_idx] = bbox
                bbox_list_mask[td_idx] = 1.0
                cand_span_idx = td_idx + 1
                if cand_span_idx < (self.max_elem_length + 2):
                    if structure[cand_span_idx] in span_idx_list:
                        structure_mask[cand_span_idx] = span_weight

        data['bbox_list'] = bbox_list
        data['bbox_list_mask'] = bbox_list_mask
        data['structure_mask'] = structure_mask
        char_beg_idx = self.get_beg_end_flag_idx('beg', 'char')
        char_end_idx = self.get_beg_end_flag_idx('end', 'char')
        elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem')
        elem_end_idx = self.get_beg_end_flag_idx('end', 'elem')
L
LDOUBLEV 已提交
687 688 689 690 691
        data['sp_tokens'] = np.array([
            char_beg_idx, char_end_idx, elem_beg_idx, elem_end_idx,
            elem_char_idx1, elem_char_idx2, self.max_text_length,
            self.max_elem_length, self.max_cell_num, elem_num
        ])
M
MissPenguin 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
        return data

    def encode(self, text, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            max_len = self.max_text_length
            current_dict = self.dict_character
        else:
            max_len = self.max_elem_length
            current_dict = self.dict_elem
        if len(text) > max_len:
            return None
        if len(text) == 0:
            if char_or_elem == "char":
                return [self.dict_character['space']]
            else:
                return None
        text_list = []
        for char in text:
            if char not in current_dict:
                return None
            text_list.append(current_dict[char])
        if len(text_list) == 0:
            if char_or_elem == "char":
                return [self.dict_character['space']]
            else:
                return None
        return text_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = np.array(self.dict_character[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_character[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = np.array(self.dict_elem[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_elem[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
L
LDOUBLEV 已提交
743
                              % beg_or_end
M
MissPenguin 已提交
744 745
        else:
            assert False, "Unsupport type %s in char_or_elem" \
746
                % char_or_elem
M
MissPenguin 已提交
747
        return idx
A
andyjpaddle 已提交
748 749 750 751 752 753 754 755 756 757


class SARLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
758 759
        super(SARLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
A
andyjpaddle 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1

        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data['length'] = np.array(len(text))
        target = [self.start_idx] + text + [self.end_idx]
        padded_text = [self.padding_idx for _ in range(self.max_text_len)]
T
tink2123 已提交
785

A
andyjpaddle 已提交
786 787 788 789 790 791
        padded_text[:len(target)] = target
        data['label'] = np.array(padded_text)
        return data

    def get_ignored_tokens(self):
        return [self.padding_idx]
792 793


794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
class PRENLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path,
                 use_space_char=False,
                 **kwargs):
        super(PRENLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

    def add_special_char(self, dict_character):
        padding_str = '<PAD>'  # 0 
        end_str = '<EOS>'  # 1
        unknown_str = '<UNK>'  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def encode(self, text):
        if len(text) == 0 or len(text) >= self.max_text_len:
            return None
        if self.lower:
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                text_list.append(self.unknown_idx)
            else:
                text_list.append(self.dict[char])
        text_list.append(self.end_idx)
        if len(text_list) < self.max_text_len:
            text_list += [self.padding_idx] * (
                self.max_text_len - len(text_list))
        return text_list

    def __call__(self, data):
        text = data['label']
        encoded_text = self.encode(text)
        if encoded_text is None:
            return None
        data['label'] = np.array(encoded_text)
        return data


841 842
class VQATokenLabelEncode(object):
    """
文幕地方's avatar
文幕地方 已提交
843
    Label encode for NLP VQA methods
844 845 846 847 848 849 850 851 852 853 854
    """

    def __init__(self,
                 class_path,
                 contains_re=False,
                 add_special_ids=False,
                 algorithm='LayoutXLM',
                 infer_mode=False,
                 ocr_engine=None,
                 **kwargs):
        super(VQATokenLabelEncode, self).__init__()
文幕地方's avatar
文幕地方 已提交
855
        from paddlenlp.transformers import LayoutXLMTokenizer, LayoutLMTokenizer, LayoutLMv2Tokenizer
856 857 858 859 860 861 862 863 864
        from ppocr.utils.utility import load_vqa_bio_label_maps
        tokenizer_dict = {
            'LayoutXLM': {
                'class': LayoutXLMTokenizer,
                'pretrained_model': 'layoutxlm-base-uncased'
            },
            'LayoutLM': {
                'class': LayoutLMTokenizer,
                'pretrained_model': 'layoutlm-base-uncased'
文幕地方's avatar
文幕地方 已提交
865 866 867 868
            },
            'LayoutLMv2': {
                'class': LayoutLMv2Tokenizer,
                'pretrained_model': 'layoutlmv2-base-uncased'
869 870 871 872 873 874 875 876 877 878 879 880
            }
        }
        self.contains_re = contains_re
        tokenizer_config = tokenizer_dict[algorithm]
        self.tokenizer = tokenizer_config['class'].from_pretrained(
            tokenizer_config['pretrained_model'])
        self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path)
        self.add_special_ids = add_special_ids
        self.infer_mode = infer_mode
        self.ocr_engine = ocr_engine

    def __call__(self, data):
文幕地方's avatar
文幕地方 已提交
881 882
        # load bbox and label info
        ocr_info = self._load_ocr_info(data)
883

文幕地方's avatar
文幕地方 已提交
884
        height, width, _ = data['image'].shape
885 886 887 888 889

        words_list = []
        bbox_list = []
        input_ids_list = []
        token_type_ids_list = []
文幕地方's avatar
文幕地方 已提交
890
        segment_offset_id = []
891 892
        gt_label_list = []

文幕地方's avatar
文幕地方 已提交
893 894 895 896 897 898 899 900 901
        entities = []

        # for re
        train_re = self.contains_re and not self.infer_mode
        if train_re:
            relations = []
            id2label = {}
            entity_id_to_index_map = {}
            empty_entity = set()
文幕地方's avatar
文幕地方 已提交
902 903 904 905

        data['ocr_info'] = copy.deepcopy(ocr_info)

        for info in ocr_info:
文幕地方's avatar
文幕地方 已提交
906
            if train_re:
907 908 909 910 911 912
                # for re
                if len(info["text"]) == 0:
                    empty_entity.add(info["id"])
                    continue
                id2label[info["id"]] = info["label"]
                relations.extend([tuple(sorted(l)) for l in info["linking"]])
文幕地方's avatar
文幕地方 已提交
913 914
            # smooth_box
            bbox = self._smooth_box(info["bbox"], height, width)
915 916 917 918 919 920 921 922 923 924 925 926

            text = info["text"]
            encode_res = self.tokenizer.encode(
                text, pad_to_max_seq_len=False, return_attention_mask=True)

            if not self.add_special_ids:
                # TODO: use tok.all_special_ids to remove
                encode_res["input_ids"] = encode_res["input_ids"][1:-1]
                encode_res["token_type_ids"] = encode_res["token_type_ids"][1:
                                                                            -1]
                encode_res["attention_mask"] = encode_res["attention_mask"][1:
                                                                            -1]
文幕地方's avatar
文幕地方 已提交
927 928 929 930 931 932
            # parse label
            if not self.infer_mode:
                label = info['label']
                gt_label = self._parse_label(label, encode_res)

            # construct entities for re
文幕地方's avatar
文幕地方 已提交
933 934 935 936
            if train_re:
                if gt_label[0] != self.label2id_map["O"]:
                    entity_id_to_index_map[info["id"]] = len(entities)
                    label = label.upper()
937 938 939 940
                    entities.append({
                        "start": len(input_ids_list),
                        "end":
                        len(input_ids_list) + len(encode_res["input_ids"]),
文幕地方's avatar
文幕地方 已提交
941
                        "label": label.upper(),
942
                    })
文幕地方's avatar
文幕地方 已提交
943 944 945 946 947 948
            else:
                entities.append({
                    "start": len(input_ids_list),
                    "end": len(input_ids_list) + len(encode_res["input_ids"]),
                    "label": 'O',
                })
949 950 951 952
            input_ids_list.extend(encode_res["input_ids"])
            token_type_ids_list.extend(encode_res["token_type_ids"])
            bbox_list.extend([bbox] * len(encode_res["input_ids"]))
            words_list.append(text)
文幕地方's avatar
文幕地方 已提交
953 954 955 956 957 958 959 960 961 962
            segment_offset_id.append(len(input_ids_list))
            if not self.infer_mode:
                gt_label_list.extend(gt_label)

        data['input_ids'] = input_ids_list
        data['token_type_ids'] = token_type_ids_list
        data['bbox'] = bbox_list
        data['attention_mask'] = [1] * len(input_ids_list)
        data['labels'] = gt_label_list
        data['segment_offset_id'] = segment_offset_id
963 964 965 966
        data['tokenizer_params'] = dict(
            padding_side=self.tokenizer.padding_side,
            pad_token_type_id=self.tokenizer.pad_token_type_id,
            pad_token_id=self.tokenizer.pad_token_id)
文幕地方's avatar
文幕地方 已提交
967
        data['entities'] = entities
968

文幕地方's avatar
文幕地方 已提交
969 970 971 972 973
        if train_re:
            data['relations'] = relations
            data['id2label'] = id2label
            data['empty_entity'] = empty_entity
            data['entity_id_to_index_map'] = entity_id_to_index_map
974 975
        return data

文幕地方's avatar
文幕地方 已提交
976
    def _load_ocr_info(self, data):
文幕地方's avatar
文幕地方 已提交
977 978 979 980 981 982 983
        def trans_poly_to_bbox(poly):
            x1 = np.min([p[0] for p in poly])
            x2 = np.max([p[0] for p in poly])
            y1 = np.min([p[1] for p in poly])
            y2 = np.max([p[1] for p in poly])
            return [x1, y1, x2, y2]

文幕地方's avatar
文幕地方 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        if self.infer_mode:
            ocr_result = self.ocr_engine.ocr(data['image'], cls=False)
            ocr_info = []
            for res in ocr_result:
                ocr_info.append({
                    "text": res[1][0],
                    "bbox": trans_poly_to_bbox(res[0]),
                    "poly": res[0],
                })
            return ocr_info
        else:
            info = data['label']
            # read text info
            info_dict = json.loads(info)
            return info_dict["ocr_info"]

    def _smooth_box(self, bbox, height, width):
        bbox[0] = int(bbox[0] * 1000.0 / width)
        bbox[2] = int(bbox[2] * 1000.0 / width)
        bbox[1] = int(bbox[1] * 1000.0 / height)
        bbox[3] = int(bbox[3] * 1000.0 / height)
        return bbox

    def _parse_label(self, label, encode_res):
        gt_label = []
        if label.lower() == "other":
            gt_label.extend([0] * len(encode_res["input_ids"]))
        else:
            gt_label.append(self.label2id_map[("b-" + label).upper()])
            gt_label.extend([self.label2id_map[("i-" + label).upper()]] *
                            (len(encode_res["input_ids"]) - 1))
        return gt_label
A
andyjpaddle 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046


class MultiLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
        super(MultiLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

        self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)
        self.sar_encode = SARLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)

    def __call__(self, data):

        data_ctc = copy.deepcopy(data)
        data_sar = copy.deepcopy(data)
        data_out = dict()
        data_out['img_path'] = data.get('img_path', None)
        data_out['image'] = data['image']
        ctc = self.ctc_encode.__call__(data_ctc)
        sar = self.sar_encode.__call__(data_sar)
        if ctc is None or sar is None:
            return None
        data_out['label_ctc'] = ctc['label']
        data_out['label_sar'] = sar['label']
        data_out['length'] = ctc['length']
        return data_out