distillation_loss.py 11.1 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn
L
fix bug  
LDOUBLEV 已提交
17 18
import numpy as np
import cv2
littletomatodonkey's avatar
littletomatodonkey 已提交
19 20

from .rec_ctc_loss import CTCLoss
A
andyjpaddle 已提交
21
from .rec_sar_loss import SARLoss
littletomatodonkey's avatar
littletomatodonkey 已提交
22
from .basic_loss import DMLLoss
23
from .basic_loss import DistanceLoss
L
LDOUBLEV 已提交
24 25
from .det_db_loss import DBLoss
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
littletomatodonkey's avatar
littletomatodonkey 已提交
26 27


L
LDOUBLEV 已提交
28 29 30 31 32 33 34 35 36 37 38 39
def _sum_loss(loss_dict):
    if "loss" in loss_dict.keys():
        return loss_dict
    else:
        loss_dict["loss"] = 0.
        for k, value in loss_dict.items():
            if k == "loss":
                continue
            else:
                loss_dict["loss"] += value
        return loss_dict

L
LDOUBLEV 已提交
40 41

class DistillationDMLLoss(DMLLoss):
littletomatodonkey's avatar
littletomatodonkey 已提交
42 43 44
    """
    """

L
LDOUBLEV 已提交
45 46 47
    def __init__(self,
                 model_name_pairs=[],
                 act=None,
48
                 use_log=False,
L
LDOUBLEV 已提交
49
                 key=None,
A
andyjpaddle 已提交
50 51
                 multi_head=False,
                 dis_head='ctc',
L
LDOUBLEV 已提交
52
                 maps_name=None,
L
LDOUBLEV 已提交
53
                 name="dml"):
54
        super().__init__(act=act, use_log=use_log)
55
        assert isinstance(model_name_pairs, list)
littletomatodonkey's avatar
littletomatodonkey 已提交
56
        self.key = key
A
andyjpaddle 已提交
57 58
        self.multi_head = multi_head
        self.dis_head = dis_head
L
fix bug  
LDOUBLEV 已提交
59
        self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
littletomatodonkey's avatar
littletomatodonkey 已提交
60
        self.name = name
L
LDOUBLEV 已提交
61
        self.maps_name = self._check_maps_name(maps_name)
62

L
fix bug  
LDOUBLEV 已提交
63 64 65
    def _check_model_name_pairs(self, model_name_pairs):
        if not isinstance(model_name_pairs, list):
            return []
66 67
        elif isinstance(model_name_pairs[0], list) and isinstance(
                model_name_pairs[0][0], str):
L
fix bug  
LDOUBLEV 已提交
68 69 70
            return model_name_pairs
        else:
            return [model_name_pairs]
L
LDOUBLEV 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    def _check_maps_name(self, maps_name):
        if maps_name is None:
            return None
        elif type(maps_name) == str:
            return [maps_name]
        elif type(maps_name) == list:
            return [maps_name]
        else:
            return None

    def _slice_out(self, outs):
        new_outs = {}
        for k in self.maps_name:
            if k == "thrink_maps":
L
LDOUBLEV 已提交
86
                new_outs[k] = outs[:, 0, :, :]
L
LDOUBLEV 已提交
87
            elif k == "threshold_maps":
L
LDOUBLEV 已提交
88
                new_outs[k] = outs[:, 1, :, :]
L
LDOUBLEV 已提交
89
            elif k == "binary_maps":
L
LDOUBLEV 已提交
90
                new_outs[k] = outs[:, 2, :, :]
L
LDOUBLEV 已提交
91 92
            else:
                continue
L
fix bug  
LDOUBLEV 已提交
93
        return new_outs
littletomatodonkey's avatar
littletomatodonkey 已提交
94 95 96

    def forward(self, predicts, batch):
        loss_dict = dict()
97 98 99
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
littletomatodonkey's avatar
littletomatodonkey 已提交
100 101 102
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
L
LDOUBLEV 已提交
103 104

            if self.maps_name is None:
A
andyjpaddle 已提交
105 106 107 108 109
                if self.multi_head:
                    loss = super().forward(out1[self.dis_head],
                                           out2[self.dis_head])
                else:
                    loss = super().forward(out1, out2)
L
LDOUBLEV 已提交
110 111 112 113 114 115
                if isinstance(loss, dict):
                    for key in loss:
                        loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
                                                       idx)] = loss[key]
                else:
                    loss_dict["{}_{}".format(self.name, idx)] = loss
116
            else:
L
LDOUBLEV 已提交
117 118
                outs1 = self._slice_out(out1)
                outs2 = self._slice_out(out2)
L
LDOUBLEV 已提交
119
                for _c, k in enumerate(outs1.keys()):
L
LDOUBLEV 已提交
120 121 122 123
                    loss = super().forward(outs1[k], outs2[k])
                    if isinstance(loss, dict):
                        for key in loss:
                            loss_dict["{}_{}_{}_{}_{}".format(key, pair[
littletomatodonkey's avatar
littletomatodonkey 已提交
124
                                0], pair[1], self.maps_name, idx)] = loss[key]
L
LDOUBLEV 已提交
125
                    else:
126 127 128
                        loss_dict["{}_{}_{}".format(self.name, self.maps_name[
                            _c], idx)] = loss

L
LDOUBLEV 已提交
129 130
        loss_dict = _sum_loss(loss_dict)

littletomatodonkey's avatar
littletomatodonkey 已提交
131 132 133 134
        return loss_dict


class DistillationCTCLoss(CTCLoss):
A
andyjpaddle 已提交
135 136 137 138 139
    def __init__(self,
                 model_name_list=[],
                 key=None,
                 multi_head=False,
                 name="loss_ctc"):
littletomatodonkey's avatar
littletomatodonkey 已提交
140 141 142 143
        super().__init__()
        self.model_name_list = model_name_list
        self.key = key
        self.name = name
A
andyjpaddle 已提交
144
        self.multi_head = multi_head
littletomatodonkey's avatar
littletomatodonkey 已提交
145 146 147

    def forward(self, predicts, batch):
        loss_dict = dict()
148
        for idx, model_name in enumerate(self.model_name_list):
littletomatodonkey's avatar
littletomatodonkey 已提交
149 150 151
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
A
andyjpaddle 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            if self.multi_head:
                assert 'ctc' in out, 'multi head has multi out'
                loss = super().forward(out['ctc'], batch[:2] + batch[3:])
            else:
                loss = super().forward(out, batch)
            if isinstance(loss, dict):
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, model_name,
                                                idx)] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss
        return loss_dict


class DistillationSARLoss(SARLoss):
    def __init__(self,
                 model_name_list=[],
                 key=None,
                 multi_head=False,
                 name="loss_sar",
                 **kwargs):
        ignore_index = kwargs.get('ignore_index', 92)
        super().__init__(ignore_index=ignore_index)
        self.model_name_list = model_name_list
        self.key = key
        self.name = name
        self.multi_head = multi_head

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, model_name in enumerate(self.model_name_list):
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            if self.multi_head:
                assert 'sar' in out, 'multi head has multi out'
                loss = super().forward(out['sar'], batch[:1] + batch[2:])
            else:
                loss = super().forward(out, batch)
littletomatodonkey's avatar
littletomatodonkey 已提交
191
            if isinstance(loss, dict):
192 193 194 195 196
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, model_name,
                                                idx)] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss
littletomatodonkey's avatar
littletomatodonkey 已提交
197
        return loss_dict
198 199


L
LDOUBLEV 已提交
200 201 202 203 204 205 206 207 208
class DistillationDBLoss(DBLoss):
    def __init__(self,
                 model_name_list=[],
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
L
LDOUBLEV 已提交
209
                 name="db",
L
LDOUBLEV 已提交
210 211 212 213 214 215
                 **kwargs):
        super().__init__()
        self.model_name_list = model_name_list
        self.name = name
        self.key = None

L
fix bug  
LDOUBLEV 已提交
216
    def forward(self, predicts, batch):
L
LDOUBLEV 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        loss_dict = {}
        for idx, model_name in enumerate(self.model_name_list):
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)

            if isinstance(loss, dict):
                for key in loss.keys():
                    if key == "loss":
                        continue
                    name = "{}_{}_{}".format(self.name, model_name, key)
                    loss_dict[name] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss

        loss_dict = _sum_loss(loss_dict)
        return loss_dict


class DistillationDilaDBLoss(DBLoss):
    def __init__(self,
                 model_name_pairs=[],
L
fix bug  
LDOUBLEV 已提交
240
                 key=None,
L
LDOUBLEV 已提交
241 242 243 244 245 246 247 248 249 250
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
                 name="dila_dbloss"):
        super().__init__()
        self.model_name_pairs = model_name_pairs
        self.name = name
L
fix bug  
LDOUBLEV 已提交
251
        self.key = key
L
LDOUBLEV 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            stu_outs = predicts[pair[0]]
            tch_outs = predicts[pair[1]]
            if self.key is not None:
                stu_preds = stu_outs[self.key]
                tch_preds = tch_outs[self.key]

            stu_shrink_maps = stu_preds[:, 0, :, :]
            stu_binary_maps = stu_preds[:, 2, :, :]

            # dilation to teacher prediction
            dilation_w = np.array([[1, 1], [1, 1]])
            th_shrink_maps = tch_preds[:, 0, :, :]
            th_shrink_maps = th_shrink_maps.numpy() > 0.3  # thresh = 0.3 
            dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
            for i in range(th_shrink_maps.shape[0]):
                dilate_maps[i] = cv2.dilate(
                    th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
            th_shrink_maps = paddle.to_tensor(dilate_maps)

            label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[
                1:]

            # calculate the shrink map loss
            bce_loss = self.alpha * self.bce_loss(
                stu_shrink_maps, th_shrink_maps, label_shrink_mask)
            loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
                                              label_shrink_mask)

            # k = f"{self.name}_{pair[0]}_{pair[1]}"
            k = "{}_{}_{}".format(self.name, pair[0], pair[1])
            loss_dict[k] = bce_loss + loss_binary_maps

        loss_dict = _sum_loss(loss_dict)
L
fix bug  
LDOUBLEV 已提交
289
        return loss_dict
L
LDOUBLEV 已提交
290 291


292 293 294 295 296 297 298 299 300 301
class DistillationDistanceLoss(DistanceLoss):
    """
    """

    def __init__(self,
                 mode="l2",
                 model_name_pairs=[],
                 key=None,
                 name="loss_distance",
                 **kargs):
littletomatodonkey's avatar
littletomatodonkey 已提交
302
        super().__init__(mode=mode, **kargs)
303 304 305
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
littletomatodonkey's avatar
littletomatodonkey 已提交
306
        self.name = name + "_l2"
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            if isinstance(loss, dict):
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
                        key]
            else:
littletomatodonkey's avatar
littletomatodonkey 已提交
322 323
                loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
                                               idx)] = loss
324
        return loss_dict