distillation_loss.py 8.7 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn

from .rec_ctc_loss import CTCLoss
from .basic_loss import DMLLoss
20
from .basic_loss import DistanceLoss
L
LDOUBLEV 已提交
21 22
from .det_db_loss import DBLoss
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
littletomatodonkey's avatar
littletomatodonkey 已提交
23 24


L
LDOUBLEV 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37
def _sum_loss(loss_dict):
    if "loss" in loss_dict.keys():
        return loss_dict
    else:
        loss_dict["loss"] = 0.
        for k, value in loss_dict.items():
            if k == "loss":
                continue
            else:
                loss_dict["loss"] += value
        return loss_dict

# class DistillationDMLLoss(DMLLoss):
littletomatodonkey's avatar
littletomatodonkey 已提交
38 39 40
    """
    """

L
LDOUBLEV 已提交
41 42 43 44 45
    def __init__(self,
                 model_name_pairs=[],
                 act=None,
                 key=None,
                 maps_name=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
46
                 name="loss_dml"):
littletomatodonkey's avatar
littletomatodonkey 已提交
47
        super().__init__(act=act)
48
        assert isinstance(model_name_pairs, list)
littletomatodonkey's avatar
littletomatodonkey 已提交
49
        self.key = key
50
        self.model_name_pairs = model_name_pairs
littletomatodonkey's avatar
littletomatodonkey 已提交
51
        self.name = name
L
LDOUBLEV 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
        self.maps_name = self.maps_name

    def _check_maps_name(self, maps_name):
        if maps_name is None:
            return None
        elif type(maps_name) == str:
            return [maps_name]
        elif type(maps_name) == list:
            return [maps_name]
        else:
            return None

    def _slice_out(self, outs):
        new_outs = {}
        for k in self.maps_name:
            if k == "thrink_maps":
                new_outs[k] = paddle.slice(outs, axes=1, starts=0, ends=1)
            elif k == "threshold_maps":
                new_outs[k] = paddle.slice(outs, axes=1, starts=1, ends=2)
            elif k == "binary_maps":
                new_outs[k] = paddle.slice(outs, axes=1, starts=2, ends=3)
            else:
                continue
littletomatodonkey's avatar
littletomatodonkey 已提交
75 76 77

    def forward(self, predicts, batch):
        loss_dict = dict()
78 79 80
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
littletomatodonkey's avatar
littletomatodonkey 已提交
81 82 83
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
L
LDOUBLEV 已提交
84 85 86 87 88 89 90 91 92

            if self.maps_name is None:
                loss = super().forward(out1, out2)
                if isinstance(loss, dict):
                    for key in loss:
                        loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
                                                       idx)] = loss[key]
                else:
                    loss_dict["{}_{}".format(self.name, idx)] = loss
93
            else:
L
LDOUBLEV 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107
                outs1 = self._slice_out(out1)
                outs2 = self._slice_out(out2)
                for k in outs1.keys():
                    loss = super().forward(outs1[k], outs2[k])
                    if isinstance(loss, dict):
                        for key in loss:
                            loss_dict["{}_{}_{}_{}_{}".format(key, pair[
                                0], pair[1], map_name, idx)] = loss[key]
                    else:
                        loss_dict["{}_{}_{}".format(self.name, map_name,
                                                    idx)] = loss

        loss_dict = _sum_loss(loss_dict)

littletomatodonkey's avatar
littletomatodonkey 已提交
108 109 110 111 112 113 114 115 116 117 118 119
        return loss_dict


class DistillationCTCLoss(CTCLoss):
    def __init__(self, model_name_list=[], key=None, name="loss_ctc"):
        super().__init__()
        self.model_name_list = model_name_list
        self.key = key
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
120
        for idx, model_name in enumerate(self.model_name_list):
littletomatodonkey's avatar
littletomatodonkey 已提交
121 122 123 124 125
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)
            if isinstance(loss, dict):
126 127 128 129 130
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, model_name,
                                                idx)] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss
littletomatodonkey's avatar
littletomatodonkey 已提交
131
        return loss_dict
132 133


L
LDOUBLEV 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
"""
class DistillationDBLoss(DBLoss):
    def __init__(self,
                 model_name_list=[],
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
                 name="db_loss",
                 **kwargs):
        super().__init__()
        self.model_name_list = model_name_list
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, model_name in enumerate(self.model_name_list):
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]

            loss = super().forward(out, batch)

            if isinstance(loss, dict):
                for key in loss.keys():
                    if key == "loss":
                        continue
                    loss_dict[f"{self.name}_{model_name}_{key}"] = loss[key]
            else:
                loss_dict[f"{self.name}_{model_name}"] = loss

        loss_dict = _sum_loss(loss_dict)
        return loss_dict


class DistillationDilaDBLoss(DBLoss):
    def __init__(self, model_name_pairs=[],
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
                 name="dila_dbloss"):
        super().__init__()
        self.model_name_pairs = model_name_pairs
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            stu_outs = predicts[pair[0]]
            tch_outs = predicts[pair[1]]
            if self.key is not None:
                stu_preds = stu_outs[self.key]
                tch_preds = tch_outs[self.key]
            
            stu_shrink_maps = stu_preds[:, 0, :, :]
            stu_binary_maps = stu_preds[:, 2, :, :]

            # dilation to teacher prediction
            dilation_w = np.array([[1,1], [1,1]])
            th_shrink_maps = tch_preds[:, 0, :, :] 
            th_shrink_maps = th_shrink_maps.numpy() > 0.3 # thresh = 0.3 
            dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
            for i in range(th_shrink_maps.shape[0]):
                dilate_maps[i] = cv2.dilate(th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
            th_shrink_maps = paddle.to_tensor(dilate_maps)

            label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[1:]
            
            # calculate the shrink map loss
            bce_loss = self.alpha * self.bce_loss(stu_shrink_maps, th_shrink_maps,
                                         label_shrink_mask)
            loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
                                            label_shrink_mask)
            
            k = f"{self.name}_{pair[0]}_{pair[1]}"
            loss_dict[k] = bce_loss + loss_binary_maps
        
        loss_dict = _sum_loss(loss_dict)
        return loss
"""


221 222 223 224 225 226 227 228 229 230
class DistillationDistanceLoss(DistanceLoss):
    """
    """

    def __init__(self,
                 mode="l2",
                 model_name_pairs=[],
                 key=None,
                 name="loss_distance",
                 **kargs):
littletomatodonkey's avatar
littletomatodonkey 已提交
231
        super().__init__(mode=mode, **kargs)
232 233 234
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
littletomatodonkey's avatar
littletomatodonkey 已提交
235
        self.name = name + "_l2"
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            if isinstance(loss, dict):
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
                        key]
            else:
littletomatodonkey's avatar
littletomatodonkey 已提交
251 252
                loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
                                               idx)] = loss
253
        return loss_dict