distillation_loss.py 9.2 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn
L
fix bug  
LDOUBLEV 已提交
17 18
import numpy as np
import cv2
littletomatodonkey's avatar
littletomatodonkey 已提交
19 20 21

from .rec_ctc_loss import CTCLoss
from .basic_loss import DMLLoss
22
from .basic_loss import DistanceLoss
L
LDOUBLEV 已提交
23 24
from .det_db_loss import DBLoss
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
littletomatodonkey's avatar
littletomatodonkey 已提交
25 26


L
LDOUBLEV 已提交
27 28 29 30 31 32 33 34 35 36 37 38
def _sum_loss(loss_dict):
    if "loss" in loss_dict.keys():
        return loss_dict
    else:
        loss_dict["loss"] = 0.
        for k, value in loss_dict.items():
            if k == "loss":
                continue
            else:
                loss_dict["loss"] += value
        return loss_dict

L
LDOUBLEV 已提交
39 40

class DistillationDMLLoss(DMLLoss):
littletomatodonkey's avatar
littletomatodonkey 已提交
41 42 43
    """
    """

L
LDOUBLEV 已提交
44 45 46 47 48
    def __init__(self,
                 model_name_pairs=[],
                 act=None,
                 key=None,
                 maps_name=None,
L
LDOUBLEV 已提交
49
                 name="dml"):
littletomatodonkey's avatar
littletomatodonkey 已提交
50
        super().__init__(act=act)
51
        assert isinstance(model_name_pairs, list)
littletomatodonkey's avatar
littletomatodonkey 已提交
52
        self.key = key
L
fix bug  
LDOUBLEV 已提交
53
        self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
littletomatodonkey's avatar
littletomatodonkey 已提交
54
        self.name = name
L
LDOUBLEV 已提交
55
        self.maps_name = self._check_maps_name(maps_name)
L
fix bug  
LDOUBLEV 已提交
56 57 58 59 60 61 62 63
    
    def _check_model_name_pairs(self, model_name_pairs):
        if not isinstance(model_name_pairs, list):
            return []
        elif isinstance(model_name_pairs[0], list) and isinstance(model_name_pairs[0][0], str):
            return model_name_pairs
        else:
            return [model_name_pairs]
L
LDOUBLEV 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

    def _check_maps_name(self, maps_name):
        if maps_name is None:
            return None
        elif type(maps_name) == str:
            return [maps_name]
        elif type(maps_name) == list:
            return [maps_name]
        else:
            return None

    def _slice_out(self, outs):
        new_outs = {}
        for k in self.maps_name:
            if k == "thrink_maps":
L
LDOUBLEV 已提交
79
                new_outs[k] = outs[:, 0, :, :]
L
LDOUBLEV 已提交
80
            elif k == "threshold_maps":
L
LDOUBLEV 已提交
81
                new_outs[k] = outs[:, 1, :, :]
L
LDOUBLEV 已提交
82
            elif k == "binary_maps":
L
LDOUBLEV 已提交
83
                new_outs[k] = outs[:, 2, :, :]
L
LDOUBLEV 已提交
84 85
            else:
                continue
L
fix bug  
LDOUBLEV 已提交
86
        return new_outs
littletomatodonkey's avatar
littletomatodonkey 已提交
87 88 89

    def forward(self, predicts, batch):
        loss_dict = dict()
90 91 92
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
littletomatodonkey's avatar
littletomatodonkey 已提交
93 94 95
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
L
LDOUBLEV 已提交
96 97 98 99 100 101 102 103 104

            if self.maps_name is None:
                loss = super().forward(out1, out2)
                if isinstance(loss, dict):
                    for key in loss:
                        loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
                                                       idx)] = loss[key]
                else:
                    loss_dict["{}_{}".format(self.name, idx)] = loss
105
            else:
L
LDOUBLEV 已提交
106 107
                outs1 = self._slice_out(out1)
                outs2 = self._slice_out(out2)
L
LDOUBLEV 已提交
108
                for _c, k in enumerate(outs1.keys()):
L
LDOUBLEV 已提交
109 110 111 112 113 114
                    loss = super().forward(outs1[k], outs2[k])
                    if isinstance(loss, dict):
                        for key in loss:
                            loss_dict["{}_{}_{}_{}_{}".format(key, pair[
                                0], pair[1], map_name, idx)] = loss[key]
                    else:
L
LDOUBLEV 已提交
115
                        loss_dict["{}_{}_{}".format(self.name, self.maps_name[_c],
L
LDOUBLEV 已提交
116
                                                    idx)] = loss
L
LDOUBLEV 已提交
117
        
L
LDOUBLEV 已提交
118 119
        loss_dict = _sum_loss(loss_dict)

littletomatodonkey's avatar
littletomatodonkey 已提交
120 121 122 123 124 125 126 127 128 129 130 131
        return loss_dict


class DistillationCTCLoss(CTCLoss):
    def __init__(self, model_name_list=[], key=None, name="loss_ctc"):
        super().__init__()
        self.model_name_list = model_name_list
        self.key = key
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
132
        for idx, model_name in enumerate(self.model_name_list):
littletomatodonkey's avatar
littletomatodonkey 已提交
133 134 135 136 137
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)
            if isinstance(loss, dict):
138 139 140 141 142
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, model_name,
                                                idx)] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss
littletomatodonkey's avatar
littletomatodonkey 已提交
143
        return loss_dict
144 145


L
LDOUBLEV 已提交
146 147 148 149 150 151 152 153 154
class DistillationDBLoss(DBLoss):
    def __init__(self,
                 model_name_list=[],
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
L
LDOUBLEV 已提交
155
                 name="db",
L
LDOUBLEV 已提交
156 157 158 159 160 161
                 **kwargs):
        super().__init__()
        self.model_name_list = model_name_list
        self.name = name
        self.key = None

L
fix bug  
LDOUBLEV 已提交
162
    def forward(self, predicts, batch):
L
LDOUBLEV 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        loss_dict = {}
        for idx, model_name in enumerate(self.model_name_list):
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)

            if isinstance(loss, dict):
                for key in loss.keys():
                    if key == "loss":
                        continue
                    name = "{}_{}_{}".format(self.name, model_name, key)
                    loss_dict[name] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss

        loss_dict = _sum_loss(loss_dict)
        return loss_dict


class DistillationDilaDBLoss(DBLoss):
    def __init__(self,
                 model_name_pairs=[],
L
fix bug  
LDOUBLEV 已提交
186
                 key=None,
L
LDOUBLEV 已提交
187 188 189 190 191 192 193 194 195 196
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
                 name="dila_dbloss"):
        super().__init__()
        self.model_name_pairs = model_name_pairs
        self.name = name
L
fix bug  
LDOUBLEV 已提交
197
        self.key = key
L
LDOUBLEV 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            stu_outs = predicts[pair[0]]
            tch_outs = predicts[pair[1]]
            if self.key is not None:
                stu_preds = stu_outs[self.key]
                tch_preds = tch_outs[self.key]

            stu_shrink_maps = stu_preds[:, 0, :, :]
            stu_binary_maps = stu_preds[:, 2, :, :]

            # dilation to teacher prediction
            dilation_w = np.array([[1, 1], [1, 1]])
            th_shrink_maps = tch_preds[:, 0, :, :]
            th_shrink_maps = th_shrink_maps.numpy() > 0.3  # thresh = 0.3 
            dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
            for i in range(th_shrink_maps.shape[0]):
                dilate_maps[i] = cv2.dilate(
                    th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
            th_shrink_maps = paddle.to_tensor(dilate_maps)

            label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[
                1:]

            # calculate the shrink map loss
            bce_loss = self.alpha * self.bce_loss(
                stu_shrink_maps, th_shrink_maps, label_shrink_mask)
            loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
                                              label_shrink_mask)

            # k = f"{self.name}_{pair[0]}_{pair[1]}"
            k = "{}_{}_{}".format(self.name, pair[0], pair[1])
            loss_dict[k] = bce_loss + loss_binary_maps

        loss_dict = _sum_loss(loss_dict)
L
fix bug  
LDOUBLEV 已提交
235
        return loss_dict
L
LDOUBLEV 已提交
236 237


238 239 240 241 242 243 244 245 246 247
class DistillationDistanceLoss(DistanceLoss):
    """
    """

    def __init__(self,
                 mode="l2",
                 model_name_pairs=[],
                 key=None,
                 name="loss_distance",
                 **kargs):
littletomatodonkey's avatar
littletomatodonkey 已提交
248
        super().__init__(mode=mode, **kargs)
249 250 251
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
littletomatodonkey's avatar
littletomatodonkey 已提交
252
        self.name = name + "_l2"
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            if isinstance(loss, dict):
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
                        key]
            else:
littletomatodonkey's avatar
littletomatodonkey 已提交
268 269
                loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
                                               idx)] = loss
270
        return loss_dict