program.py 22.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sys
import yaml
import os
from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
L
licx 已提交
25

L
LDOUBLEV 已提交
26 27 28 29 30 31 32
logger = initial_logger()

import paddle.fluid as fluid
import time
from ppocr.utils.stats import TrainingStats
from eval_utils.eval_det_utils import eval_det_run
from eval_utils.eval_rec_utils import eval_rec_run
W
WenmuZhou 已提交
33
from eval_utils.eval_cls_utils import eval_cls_run
L
LDOUBLEV 已提交
34 35
from ppocr.utils.save_load import save_model
import numpy as np
T
tink2123 已提交
36
from ppocr.utils.character import cal_predicts_accuracy, cal_predicts_accuracy_srn, CharacterOps
L
LDOUBLEV 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79


class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

农夫三拳_'s avatar
农夫三拳_ 已提交
80 81
default_config = {'Global': {'debug': False, }}

L
LDOUBLEV 已提交
82 83 84 85 86 87 88 89

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
农夫三拳_'s avatar
农夫三拳_ 已提交
90
    merge_config(default_config)
L
LDOUBLEV 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
    merge_config(yaml.load(open(file_path), Loader=yaml.Loader))
    assert "reader_yml" in global_config['Global'],\
        "absence reader_yml in global"
    reader_file_path = global_config['Global']['reader_yml']
    _, ext = os.path.splitext(reader_file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for reader"
    merge_config(yaml.load(open(reader_file_path), Loader=yaml.Loader))
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
118 119 120 121
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
L
LDOUBLEV 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                assert (sub_key in cur)
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
        if use_gpu and not fluid.is_compiled_with_cuda():
            logger.error(err)
            sys.exit(1)
    except Exception as e:
        pass


def build(config, main_prog, startup_prog, mode):
    """
    Build a program using a model and an optimizer
        1. create feeds
        2. create a dataloader
        3. create a model
        4. create fetchs
        5. create an optimizer
    Args:
        config(dict): config
        main_prog(): main program
        startup_prog(): startup program
        is_train(bool): train or valid
    Returns:
        dataloader(): a bridge between the model and the data
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            func_infor = config['Architecture']['function']
            model = create_module(func_infor)(params=config)
            dataloader, outputs = model(mode=mode)
            fetch_name_list = list(outputs.keys())
            fetch_varname_list = [outputs[v].name for v in fetch_name_list]
            opt_loss_name = None
T
tink2123 已提交
175 176 177
            model_average = None
            img_loss_name = None
            word_loss_name = None
L
LDOUBLEV 已提交
178 179
            if mode == "train":
                opt_loss = outputs['total_loss']
T
tink2123 已提交
180 181 182 183 184
                # srn loss
                #img_loss = outputs['img_loss']
                #word_loss = outputs['word_loss']
                #img_loss_name = img_loss.name
                #word_loss_name = word_loss.name
L
LDOUBLEV 已提交
185 186 187 188 189 190 191
                opt_params = config['Optimizer']
                optimizer = create_module(opt_params['function'])(opt_params)
                optimizer.minimize(opt_loss)
                opt_loss_name = opt_loss.name
                global_lr = optimizer._global_learning_rate()
                fetch_name_list.insert(0, "lr")
                fetch_varname_list.insert(0, global_lr.name)
T
tink2123 已提交
192 193 194 195 196 197 198 199
                if "loss_type" in config["Global"]:
                    if config['Global']["loss_type"] == 'srn':
                        model_average = fluid.optimizer.ModelAverage(
                            config['Global']['average_window'],
                            min_average_window=config['Global'][
                                'min_average_window'],
                            max_average_window=config['Global'][
                                'max_average_window'])
T
tink2123 已提交
200

T
tink2123 已提交
201 202
    return (dataloader, fetch_name_list, fetch_varname_list, opt_loss_name,
            model_average)
L
LDOUBLEV 已提交
203 204 205 206


def build_export(config, main_prog, startup_prog):
    """
207 208 209 210 211 212 213 214 215
    Build input and output for exporting a checkpoints model to an inference model
    Args:
        config(dict): config
        main_prog(): main program
        startup_prog(): startup program
    Returns:
        feeded_var_names(list[str]): var names of input for exported inference model
        target_vars(list[Variable]): output vars for exported inference model
        fetches_var_name: dict of checkpoints model outputs(included loss and measures)
L
LDOUBLEV 已提交
216 217 218 219 220
    """
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            func_infor = config['Architecture']['function']
            model = create_module(func_infor)(params=config)
T
tink2123 已提交
221 222
            algorithm = config['Global']['algorithm']
            if algorithm == "SRN":
T
tink2123 已提交
223 224 225
                image, others, outputs = model(mode='export')
            else:
                image, outputs = model(mode='export')
226
            fetches_var_name = sorted([name for name in outputs.keys()])
D
dyning 已提交
227
            fetches_var = [outputs[name] for name in fetches_var_name]
T
tink2123 已提交
228
    if algorithm == "SRN":
T
tink2123 已提交
229 230 231 232 233
        others_var_names = sorted([name for name in others.keys()])
        feeded_var_names = [image.name] + others_var_names
    else:
        feeded_var_names = [image.name]

L
LDOUBLEV 已提交
234 235 236 237
    target_vars = fetches_var
    return feeded_var_names, target_vars, fetches_var_name


B
baiyfbupt 已提交
238
def create_multi_devices_program(program, loss_var_name, for_quant=False):
L
LDOUBLEV 已提交
239 240 241
    build_strategy = fluid.BuildStrategy()
    build_strategy.memory_optimize = False
    build_strategy.enable_inplace = True
B
baiyfbupt 已提交
242 243
    if for_quant:
        build_strategy.fuse_all_reduce_ops = False
L
LDOUBLEV 已提交
244 245 246 247 248 249 250 251 252
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_iteration_per_drop_scope = 1
    compile_program = fluid.CompiledProgram(program).with_data_parallel(
        loss_name=loss_var_name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)
    return compile_program


Y
yukavio 已提交
253 254 255 256 257
def train_eval_det_run(config,
                       exe,
                       train_info_dict,
                       eval_info_dict,
                       is_pruning=False):
258 259 260
    '''
    main program of evaluation for detection
    '''
L
LDOUBLEV 已提交
261 262 263 264 265
    train_batch_id = 0
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
266 267 268 269 270 271 272
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
273 274
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
275 276
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
L
LDOUBLEV 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    train_stats = TrainingStats(log_smooth_window,
                                train_info_dict['fetch_name_list'])
    best_eval_hmean = -1
    best_batch_id = 0
    best_epoch = 0
    train_loader = train_info_dict['reader']
    for epoch in range(epoch_num):
        train_loader.start()
        try:
            while True:
                t1 = time.time()
                train_outs = exe.run(
                    program=train_info_dict['compile_program'],
                    fetch_list=train_info_dict['fetch_varname_list'],
                    return_numpy=False)
                stats = {}
                for tno in range(len(train_outs)):
                    fetch_name = train_info_dict['fetch_name_list'][tno]
                    fetch_value = np.mean(np.array(train_outs[tno]))
                    stats[fetch_name] = fetch_value
                t2 = time.time()
                train_batch_elapse = t2 - t1
                train_stats.update(stats)
L
LDOUBLEV 已提交
300
                if train_batch_id > 0 and train_batch_id  \
L
LDOUBLEV 已提交
301 302 303 304 305 306
                    % print_batch_step == 0:
                    logs = train_stats.log()
                    strs = 'epoch: {}, iter: {}, {}, time: {:.3f}'.format(
                        epoch, train_batch_id, logs, train_batch_elapse)
                    logger.info(strs)

L
LDOUBLEV 已提交
307 308
                if train_batch_id > start_eval_step and\
                    (train_batch_id - start_eval_step) % eval_batch_step == 0:
L
LDOUBLEV 已提交
309 310 311 312 313 314 315
                    metrics = eval_det_run(exe, config, eval_info_dict, "eval")
                    hmean = metrics['hmean']
                    if hmean >= best_eval_hmean:
                        best_eval_hmean = hmean
                        best_batch_id = train_batch_id
                        best_epoch = epoch
                        save_path = save_model_dir + "/best_accuracy"
Y
yukavio 已提交
316
                        if is_pruning:
Y
yukavio 已提交
317
                            import paddleslim as slim
Y
yukavio 已提交
318 319 320 321 322 323
                            slim.prune.save_model(
                                exe, train_info_dict['train_program'],
                                save_path)
                        else:
                            save_model(train_info_dict['train_program'],
                                       save_path)
L
LDOUBLEV 已提交
324 325 326 327 328 329 330 331
                    strs = 'Test iter: {}, metrics:{}, best_hmean:{:.6f}, best_epoch:{}, best_batch_id:{}'.format(
                        train_batch_id, metrics, best_eval_hmean, best_epoch,
                        best_batch_id)
                    logger.info(strs)
                train_batch_id += 1

        except fluid.core.EOFException:
            train_loader.reset()
T
tink2123 已提交
332
        if epoch == 0 and save_epoch_step == 1:
T
tink2123 已提交
333
            save_path = save_model_dir + "/iter_epoch_0"
Y
yukavio 已提交
334
            if is_pruning:
Y
yukavio 已提交
335
                import paddleslim as slim
Y
yukavio 已提交
336 337 338 339
                slim.prune.save_model(exe, train_info_dict['train_program'],
                                      save_path)
            else:
                save_model(train_info_dict['train_program'], save_path)
L
LDOUBLEV 已提交
340 341
        if epoch > 0 and epoch % save_epoch_step == 0:
            save_path = save_model_dir + "/iter_epoch_%d" % (epoch)
Y
yukavio 已提交
342
            if is_pruning:
Y
yukavio 已提交
343
                import paddleslim as slim
Y
yukavio 已提交
344 345 346 347
                slim.prune.save_model(exe, train_info_dict['train_program'],
                                      save_path)
            else:
                save_model(train_info_dict['train_program'], save_path)
L
LDOUBLEV 已提交
348 349 350 351
    return


def train_eval_rec_run(config, exe, train_info_dict, eval_info_dict):
352 353 354
    '''
    main program of evaluation for recognition
    '''
L
LDOUBLEV 已提交
355 356 357 358 359
    train_batch_id = 0
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
360 361 362 363 364 365 366
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
367 368
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
L
LDOUBLEV 已提交
369
    if not os.path.exists(save_model_dir):
L
LDOUBLEV 已提交
370
        os.makedirs(save_model_dir)
L
LDOUBLEV 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    train_stats = TrainingStats(log_smooth_window, ['loss', 'acc'])
    best_eval_acc = -1
    best_batch_id = 0
    best_epoch = 0
    train_loader = train_info_dict['reader']
    for epoch in range(epoch_num):
        train_loader.start()
        try:
            while True:
                t1 = time.time()
                train_outs = exe.run(
                    program=train_info_dict['compile_program'],
                    fetch_list=train_info_dict['fetch_varname_list'],
                    return_numpy=False)
                fetch_map = dict(
                    zip(train_info_dict['fetch_name_list'],
                        range(len(train_outs))))

                loss = np.mean(np.array(train_outs[fetch_map['total_loss']]))
                lr = np.mean(np.array(train_outs[fetch_map['lr']]))
                preds_idx = fetch_map['decoded_out']
                preds = np.array(train_outs[preds_idx])
                labels_idx = fetch_map['label']
                labels = np.array(train_outs[labels_idx])

T
tink2123 已提交
396 397 398 399 400 401 402 403 404 405 406
                if config['Global']['loss_type'] != 'srn':
                    preds_lod = train_outs[preds_idx].lod()[0]
                    labels_lod = train_outs[labels_idx].lod()[0]

                    acc, acc_num, img_num = cal_predicts_accuracy(
                        config['Global']['char_ops'], preds, preds_lod, labels,
                        labels_lod)
                else:
                    acc, acc_num, img_num = cal_predicts_accuracy_srn(
                        config['Global']['char_ops'], preds, labels,
                        config['Global']['max_text_length'])
L
LDOUBLEV 已提交
407 408 409 410
                t2 = time.time()
                train_batch_elapse = t2 - t1
                stats = {'loss': loss, 'acc': acc}
                train_stats.update(stats)
L
update  
LDOUBLEV 已提交
411
                if train_batch_id > start_eval_step and (train_batch_id - start_eval_step) \
L
LDOUBLEV 已提交
412 413 414 415 416 417 418 419
                    % print_batch_step == 0:
                    logs = train_stats.log()
                    strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format(
                        epoch, train_batch_id, lr, logs, train_batch_elapse)
                    logger.info(strs)

                if train_batch_id > 0 and\
                    train_batch_id % eval_batch_step == 0:
T
tink2123 已提交
420 421 422
                    model_average = train_info_dict['model_average']
                    if model_average != None:
                        model_average.apply(exe)
L
LDOUBLEV 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
                    metrics = eval_rec_run(exe, config, eval_info_dict, "eval")
                    eval_acc = metrics['avg_acc']
                    eval_sample_num = metrics['total_sample_num']
                    if eval_acc > best_eval_acc:
                        best_eval_acc = eval_acc
                        best_batch_id = train_batch_id
                        best_epoch = epoch
                        save_path = save_model_dir + "/best_accuracy"
                        save_model(train_info_dict['train_program'], save_path)
                    strs = 'Test iter: {}, acc:{:.6f}, best_acc:{:.6f}, best_epoch:{}, best_batch_id:{}, eval_sample_num:{}'.format(
                        train_batch_id, eval_acc, best_eval_acc, best_epoch,
                        best_batch_id, eval_sample_num)
                    logger.info(strs)
                train_batch_id += 1

        except fluid.core.EOFException:
            train_loader.reset()
T
tink2123 已提交
440
        if epoch == 0 and save_epoch_step == 1:
T
tink2123 已提交
441
            save_path = save_model_dir + "/iter_epoch_0"
442
            save_model(train_info_dict['train_program'], save_path)
L
LDOUBLEV 已提交
443 444 445 446
        if epoch > 0 and epoch % save_epoch_step == 0:
            save_path = save_model_dir + "/iter_epoch_%d" % (epoch)
            save_model(train_info_dict['train_program'], save_path)
    return
L
licx 已提交
447

T
tink2123 已提交
448

W
WenmuZhou 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
def train_eval_cls_run(config, exe, train_info_dict, eval_info_dict):
    train_batch_id = 0
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
    train_stats = TrainingStats(log_smooth_window, ['loss', 'acc'])
    best_eval_acc = -1
    best_batch_id = 0
    best_epoch = 0
    train_loader = train_info_dict['reader']
    for epoch in range(epoch_num):
        train_loader.start()
        try:
            while True:
                t1 = time.time()
                train_outs = exe.run(
                    program=train_info_dict['compile_program'],
                    fetch_list=train_info_dict['fetch_varname_list'],
                    return_numpy=False)
                fetch_map = dict(
                    zip(train_info_dict['fetch_name_list'],
                        range(len(train_outs))))

                loss = np.mean(np.array(train_outs[fetch_map['total_loss']]))
                lr = np.mean(np.array(train_outs[fetch_map['lr']]))
                acc = np.mean(np.array(train_outs[fetch_map['acc']]))

                t2 = time.time()
                train_batch_elapse = t2 - t1
                stats = {'loss': loss, 'acc': acc}
                train_stats.update(stats)
                if train_batch_id > start_eval_step and (train_batch_id - start_eval_step) \
                    % print_batch_step == 0:
                    logs = train_stats.log()
                    strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format(
                        epoch, train_batch_id, lr, logs, train_batch_elapse)
                    logger.info(strs)

                if train_batch_id > 0 and\
                    train_batch_id % eval_batch_step == 0:
                    model_average = train_info_dict['model_average']
                    if model_average != None:
                        model_average.apply(exe)
                    metrics = eval_cls_run(exe, eval_info_dict)
                    eval_acc = metrics['avg_acc']
                    eval_sample_num = metrics['total_sample_num']
                    if eval_acc > best_eval_acc:
                        best_eval_acc = eval_acc
                        best_batch_id = train_batch_id
                        best_epoch = epoch
                        save_path = save_model_dir + "/best_accuracy"
                        save_model(train_info_dict['train_program'], save_path)
                    strs = 'Test iter: {}, acc:{:.6f}, best_acc:{:.6f}, best_epoch:{}, best_batch_id:{}, eval_sample_num:{}'.format(
                        train_batch_id, eval_acc, best_eval_acc, best_epoch,
                        best_batch_id, eval_sample_num)
                    logger.info(strs)
                train_batch_id += 1

        except fluid.core.EOFException:
            train_loader.reset()
        if epoch == 0 and save_epoch_step == 1:
            save_path = save_model_dir + "/iter_epoch_0"
            save_model(train_info_dict['train_program'], save_path)
        if epoch > 0 and epoch % save_epoch_step == 0:
            save_path = save_model_dir + "/iter_epoch_%d" % (epoch)
            save_model(train_info_dict['train_program'], save_path)
    return


L
licx 已提交
530
def preprocess():
531
    # load config from yml file
L
licx 已提交
532 533 534 535 536 537 538 539 540
    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    logger.info(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

541
    # check whether the set algorithm belongs to the supported algorithm list
L
licx 已提交
542
    alg = config['Global']['algorithm']
T
tink2123 已提交
543
    assert alg in [
W
WenmuZhou 已提交
544
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN', 'CLS'
T
tink2123 已提交
545
    ]
T
tink2123 已提交
546
    if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN']:
L
licx 已提交
547 548 549 550 551 552 553 554
        config['Global']['char_ops'] = CharacterOps(config['Global'])

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    startup_program = fluid.Program()
    train_program = fluid.Program()

    if alg in ['EAST', 'DB', 'SAST']:
        train_alg_type = 'det'
W
WenmuZhou 已提交
555
    elif alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN']:
L
licx 已提交
556
        train_alg_type = 'rec'
W
WenmuZhou 已提交
557 558
    else:
        train_alg_type = 'cls'
L
licx 已提交
559 560

    return startup_program, train_program, place, config, train_alg_type