program.py 17.4 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sys
import yaml
import os
from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
L
licx 已提交
25

L
LDOUBLEV 已提交
26 27 28 29 30 31 32 33 34
logger = initial_logger()

import paddle.fluid as fluid
import time
from ppocr.utils.stats import TrainingStats
from eval_utils.eval_det_utils import eval_det_run
from eval_utils.eval_rec_utils import eval_rec_run
from ppocr.utils.save_load import save_model
import numpy as np
T
tink2123 已提交
35
from ppocr.utils.character import cal_predicts_accuracy, cal_predicts_accuracy_srn, CharacterOps
L
LDOUBLEV 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78


class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

农夫三拳_'s avatar
农夫三拳_ 已提交
79 80
default_config = {'Global': {'debug': False, }}

L
LDOUBLEV 已提交
81 82 83 84 85 86 87 88

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
农夫三拳_'s avatar
农夫三拳_ 已提交
89
    merge_config(default_config)
L
LDOUBLEV 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
    merge_config(yaml.load(open(file_path), Loader=yaml.Loader))
    assert "reader_yml" in global_config['Global'],\
        "absence reader_yml in global"
    reader_file_path = global_config['Global']['reader_yml']
    _, ext = os.path.splitext(reader_file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for reader"
    merge_config(yaml.load(open(reader_file_path), Loader=yaml.Loader))
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
117 118 119 120
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
L
LDOUBLEV 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                assert (sub_key in cur)
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
        if use_gpu and not fluid.is_compiled_with_cuda():
            logger.error(err)
            sys.exit(1)
    except Exception as e:
        pass


def build(config, main_prog, startup_prog, mode):
    """
    Build a program using a model and an optimizer
        1. create feeds
        2. create a dataloader
        3. create a model
        4. create fetchs
        5. create an optimizer
    Args:
        config(dict): config
        main_prog(): main program
        startup_prog(): startup program
        is_train(bool): train or valid
    Returns:
        dataloader(): a bridge between the model and the data
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            func_infor = config['Architecture']['function']
            model = create_module(func_infor)(params=config)
            dataloader, outputs = model(mode=mode)
            fetch_name_list = list(outputs.keys())
            fetch_varname_list = [outputs[v].name for v in fetch_name_list]
            opt_loss_name = None
T
tink2123 已提交
174 175 176
            model_average = None
            img_loss_name = None
            word_loss_name = None
L
LDOUBLEV 已提交
177 178
            if mode == "train":
                opt_loss = outputs['total_loss']
T
tink2123 已提交
179 180 181 182 183
                # srn loss
                #img_loss = outputs['img_loss']
                #word_loss = outputs['word_loss']
                #img_loss_name = img_loss.name
                #word_loss_name = word_loss.name
L
LDOUBLEV 已提交
184 185 186 187 188 189 190
                opt_params = config['Optimizer']
                optimizer = create_module(opt_params['function'])(opt_params)
                optimizer.minimize(opt_loss)
                opt_loss_name = opt_loss.name
                global_lr = optimizer._global_learning_rate()
                fetch_name_list.insert(0, "lr")
                fetch_varname_list.insert(0, global_lr.name)
T
tink2123 已提交
191 192 193 194 195 196 197 198
                if "loss_type" in config["Global"]:
                    if config['Global']["loss_type"] == 'srn':
                        model_average = fluid.optimizer.ModelAverage(
                            config['Global']['average_window'],
                            min_average_window=config['Global'][
                                'min_average_window'],
                            max_average_window=config['Global'][
                                'max_average_window'])
T
tink2123 已提交
199

T
tink2123 已提交
200 201
    return (dataloader, fetch_name_list, fetch_varname_list, opt_loss_name,
            model_average)
L
LDOUBLEV 已提交
202 203 204 205 206 207 208 209 210


def build_export(config, main_prog, startup_prog):
    """
    """
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            func_infor = config['Architecture']['function']
            model = create_module(func_infor)(params=config)
T
tink2123 已提交
211 212 213 214 215
            loss_type = config['Global']['loss_type']
            if loss_type == "srn":
                image, others, outputs = model(mode='export')
            else:
                image, outputs = model(mode='export')
216
            fetches_var_name = sorted([name for name in outputs.keys()])
D
dyning 已提交
217
            fetches_var = [outputs[name] for name in fetches_var_name]
T
tink2123 已提交
218 219 220 221 222 223
    if loss_type == "srn":
        others_var_names = sorted([name for name in others.keys()])
        feeded_var_names = [image.name] + others_var_names
    else:
        feeded_var_names = [image.name]

L
LDOUBLEV 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    target_vars = fetches_var
    return feeded_var_names, target_vars, fetches_var_name


def create_multi_devices_program(program, loss_var_name):
    build_strategy = fluid.BuildStrategy()
    build_strategy.memory_optimize = False
    build_strategy.enable_inplace = True
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_iteration_per_drop_scope = 1
    compile_program = fluid.CompiledProgram(program).with_data_parallel(
        loss_name=loss_var_name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)
    return compile_program


def train_eval_det_run(config, exe, train_info_dict, eval_info_dict):
    train_batch_id = 0
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
247 248 249 250 251 252 253
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
254 255
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
256 257
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
L
LDOUBLEV 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    train_stats = TrainingStats(log_smooth_window,
                                train_info_dict['fetch_name_list'])
    best_eval_hmean = -1
    best_batch_id = 0
    best_epoch = 0
    train_loader = train_info_dict['reader']
    for epoch in range(epoch_num):
        train_loader.start()
        try:
            while True:
                t1 = time.time()
                train_outs = exe.run(
                    program=train_info_dict['compile_program'],
                    fetch_list=train_info_dict['fetch_varname_list'],
                    return_numpy=False)
                stats = {}
                for tno in range(len(train_outs)):
                    fetch_name = train_info_dict['fetch_name_list'][tno]
                    fetch_value = np.mean(np.array(train_outs[tno]))
                    stats[fetch_name] = fetch_value
                t2 = time.time()
                train_batch_elapse = t2 - t1
                train_stats.update(stats)
L
LDOUBLEV 已提交
281
                if train_batch_id > 0 and train_batch_id  \
L
LDOUBLEV 已提交
282 283 284 285 286 287
                    % print_batch_step == 0:
                    logs = train_stats.log()
                    strs = 'epoch: {}, iter: {}, {}, time: {:.3f}'.format(
                        epoch, train_batch_id, logs, train_batch_elapse)
                    logger.info(strs)

L
LDOUBLEV 已提交
288 289
                if train_batch_id > start_eval_step and\
                    (train_batch_id - start_eval_step) % eval_batch_step == 0:
L
LDOUBLEV 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
                    metrics = eval_det_run(exe, config, eval_info_dict, "eval")
                    hmean = metrics['hmean']
                    if hmean >= best_eval_hmean:
                        best_eval_hmean = hmean
                        best_batch_id = train_batch_id
                        best_epoch = epoch
                        save_path = save_model_dir + "/best_accuracy"
                        save_model(train_info_dict['train_program'], save_path)
                    strs = 'Test iter: {}, metrics:{}, best_hmean:{:.6f}, best_epoch:{}, best_batch_id:{}'.format(
                        train_batch_id, metrics, best_eval_hmean, best_epoch,
                        best_batch_id)
                    logger.info(strs)
                train_batch_id += 1

        except fluid.core.EOFException:
            train_loader.reset()
T
tink2123 已提交
306
        if epoch == 0 and save_epoch_step == 1:
T
tink2123 已提交
307
            save_path = save_model_dir + "/iter_epoch_0"
308
            save_model(train_info_dict['train_program'], save_path)
L
LDOUBLEV 已提交
309 310 311 312 313 314 315 316 317 318 319 320
        if epoch > 0 and epoch % save_epoch_step == 0:
            save_path = save_model_dir + "/iter_epoch_%d" % (epoch)
            save_model(train_info_dict['train_program'], save_path)
    return


def train_eval_rec_run(config, exe, train_info_dict, eval_info_dict):
    train_batch_id = 0
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
321 322 323 324 325 326 327
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
328 329
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
L
LDOUBLEV 已提交
330
    if not os.path.exists(save_model_dir):
L
LDOUBLEV 已提交
331
        os.makedirs(save_model_dir)
L
LDOUBLEV 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    train_stats = TrainingStats(log_smooth_window, ['loss', 'acc'])
    best_eval_acc = -1
    best_batch_id = 0
    best_epoch = 0
    train_loader = train_info_dict['reader']
    for epoch in range(epoch_num):
        train_loader.start()
        try:
            while True:
                t1 = time.time()
                train_outs = exe.run(
                    program=train_info_dict['compile_program'],
                    fetch_list=train_info_dict['fetch_varname_list'],
                    return_numpy=False)
                fetch_map = dict(
                    zip(train_info_dict['fetch_name_list'],
                        range(len(train_outs))))

                loss = np.mean(np.array(train_outs[fetch_map['total_loss']]))
                lr = np.mean(np.array(train_outs[fetch_map['lr']]))
                preds_idx = fetch_map['decoded_out']
                preds = np.array(train_outs[preds_idx])
                labels_idx = fetch_map['label']
                labels = np.array(train_outs[labels_idx])

T
tink2123 已提交
357 358 359 360 361 362 363 364 365 366 367
                if config['Global']['loss_type'] != 'srn':
                    preds_lod = train_outs[preds_idx].lod()[0]
                    labels_lod = train_outs[labels_idx].lod()[0]

                    acc, acc_num, img_num = cal_predicts_accuracy(
                        config['Global']['char_ops'], preds, preds_lod, labels,
                        labels_lod)
                else:
                    acc, acc_num, img_num = cal_predicts_accuracy_srn(
                        config['Global']['char_ops'], preds, labels,
                        config['Global']['max_text_length'])
L
LDOUBLEV 已提交
368 369 370 371
                t2 = time.time()
                train_batch_elapse = t2 - t1
                stats = {'loss': loss, 'acc': acc}
                train_stats.update(stats)
L
update  
LDOUBLEV 已提交
372
                if train_batch_id > start_eval_step and (train_batch_id - start_eval_step) \
L
LDOUBLEV 已提交
373 374 375 376 377 378 379 380
                    % print_batch_step == 0:
                    logs = train_stats.log()
                    strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format(
                        epoch, train_batch_id, lr, logs, train_batch_elapse)
                    logger.info(strs)

                if train_batch_id > 0 and\
                    train_batch_id % eval_batch_step == 0:
T
tink2123 已提交
381 382 383
                    model_average = train_info_dict['model_average']
                    if model_average != None:
                        model_average.apply(exe)
L
LDOUBLEV 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
                    metrics = eval_rec_run(exe, config, eval_info_dict, "eval")
                    eval_acc = metrics['avg_acc']
                    eval_sample_num = metrics['total_sample_num']
                    if eval_acc > best_eval_acc:
                        best_eval_acc = eval_acc
                        best_batch_id = train_batch_id
                        best_epoch = epoch
                        save_path = save_model_dir + "/best_accuracy"
                        save_model(train_info_dict['train_program'], save_path)
                    strs = 'Test iter: {}, acc:{:.6f}, best_acc:{:.6f}, best_epoch:{}, best_batch_id:{}, eval_sample_num:{}'.format(
                        train_batch_id, eval_acc, best_eval_acc, best_epoch,
                        best_batch_id, eval_sample_num)
                    logger.info(strs)
                train_batch_id += 1

        except fluid.core.EOFException:
            train_loader.reset()
T
tink2123 已提交
401
        if epoch == 0 and save_epoch_step == 1:
T
tink2123 已提交
402
            save_path = save_model_dir + "/iter_epoch_0"
403
            save_model(train_info_dict['train_program'], save_path)
L
LDOUBLEV 已提交
404 405 406 407
        if epoch > 0 and epoch % save_epoch_step == 0:
            save_path = save_model_dir + "/iter_epoch_%d" % (epoch)
            save_model(train_info_dict['train_program'], save_path)
    return
L
licx 已提交
408

T
tink2123 已提交
409

L
licx 已提交
410 411 412 413 414 415 416 417 418 419 420
def preprocess():
    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    logger.info(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

    alg = config['Global']['algorithm']
T
tink2123 已提交
421 422 423
    assert alg in [
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN'
    ]
T
tink2123 已提交
424
    if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN']:
L
licx 已提交
425 426 427 428 429 430 431 432 433 434 435 436
        config['Global']['char_ops'] = CharacterOps(config['Global'])

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    startup_program = fluid.Program()
    train_program = fluid.Program()

    if alg in ['EAST', 'DB', 'SAST']:
        train_alg_type = 'det'
    else:
        train_alg_type = 'rec'

    return startup_program, train_program, place, config, train_alg_type