vqa_layoutlm.py 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
from paddle import nn

from paddlenlp.transformers import LayoutXLMModel, LayoutXLMForTokenClassification, LayoutXLMForRelationExtraction
from paddlenlp.transformers import LayoutLMModel, LayoutLMForTokenClassification
文幕地方's avatar
文幕地方 已提交
24
from paddlenlp.transformers import LayoutLMv2Model, LayoutLMv2ForTokenClassification, LayoutLMv2ForRelationExtraction
25 26 27

__all__ = ["LayoutXLMForSer", 'LayoutLMForSer']

文幕地方's avatar
文幕地方 已提交
28 29
pretrained_model_dict = {
    LayoutXLMModel: 'layoutxlm-base-uncased',
文幕地方's avatar
文幕地方 已提交
30 31
    LayoutLMModel: 'layoutlm-base-uncased',
    LayoutLMv2Model: 'layoutlmv2-base-uncased'
文幕地方's avatar
文幕地方 已提交
32 33
}

34 35 36 37 38 39

class NLPBaseModel(nn.Layer):
    def __init__(self,
                 base_model_class,
                 model_class,
                 type='ser',
文幕地方's avatar
文幕地方 已提交
40
                 pretrained=True,
41 42 43 44 45 46
                 checkpoints=None,
                 **kwargs):
        super(NLPBaseModel, self).__init__()
        if checkpoints is not None:
            self.model = model_class.from_pretrained(checkpoints)
        else:
文幕地方's avatar
文幕地方 已提交
47 48 49 50 51 52 53 54
            pretrained_model_name = pretrained_model_dict[base_model_class]
            if pretrained:
                base_model = base_model_class.from_pretrained(
                    pretrained_model_name)
            else:
                base_model = base_model_class(
                    **base_model_class.pretrained_init_configuration[
                        pretrained_model_name])
55 56 57 58 59 60 61 62
            if type == 'ser':
                self.model = model_class(
                    base_model, num_classes=kwargs['num_classes'], dropout=None)
            else:
                self.model = model_class(base_model, dropout=None)
        self.out_channels = 1


文幕地方's avatar
文幕地方 已提交
63
class LayoutLMForSer(NLPBaseModel):
文幕地方's avatar
文幕地方 已提交
64
    def __init__(self, num_classes, pretrained=True, checkpoints=None,
65
                 **kwargs):
文幕地方's avatar
文幕地方 已提交
66 67 68 69 70 71 72 73 74 75 76
        super(LayoutLMForSer, self).__init__(
            LayoutLMModel,
            LayoutLMForTokenClassification,
            'ser',
            pretrained,
            checkpoints,
            num_classes=num_classes)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
77 78 79
            bbox=x[1],
            attention_mask=x[2],
            token_type_ids=x[3],
文幕地方's avatar
文幕地方 已提交
80 81 82 83 84 85 86 87 88 89 90
            position_ids=None,
            output_hidden_states=False)
        return x


class LayoutLMv2ForSer(NLPBaseModel):
    def __init__(self, num_classes, pretrained=True, checkpoints=None,
                 **kwargs):
        super(LayoutLMv2ForSer, self).__init__(
            LayoutLMv2Model,
            LayoutLMv2ForTokenClassification,
91
            'ser',
文幕地方's avatar
文幕地方 已提交
92
            pretrained,
93 94 95 96 97 98
            checkpoints,
            num_classes=num_classes)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
99 100 101 102
            bbox=x[1],
            attention_mask=x[2],
            token_type_ids=x[3],
            image=x[4],
103 104 105
            position_ids=None,
            head_mask=None,
            labels=None)
106 107
        if not self.training:
            return x
108 109 110
        return x[0]


文幕地方's avatar
文幕地方 已提交
111
class LayoutXLMForSer(NLPBaseModel):
文幕地方's avatar
文幕地方 已提交
112
    def __init__(self, num_classes, pretrained=True, checkpoints=None,
113
                 **kwargs):
文幕地方's avatar
文幕地方 已提交
114 115 116
        super(LayoutXLMForSer, self).__init__(
            LayoutXLMModel,
            LayoutXLMForTokenClassification,
117
            'ser',
文幕地方's avatar
文幕地方 已提交
118
            pretrained,
119 120 121 122 123
            checkpoints,
            num_classes=num_classes)

    def forward(self, x):
        x = self.model(
文幕地方's avatar
文幕地方 已提交
124 125 126 127 128 129 130 131
            input_ids=x[0],
            bbox=x[1],
            attention_mask=x[2],
            token_type_ids=x[3],
            image=x[4],
            position_ids=None,
            head_mask=None,
            labels=None)
132 133
        if not self.training:
            return x
文幕地方's avatar
文幕地方 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146
        return x[0]


class LayoutLMv2ForRe(NLPBaseModel):
    def __init__(self, pretrained=True, checkpoints=None, **kwargs):
        super(LayoutLMv2ForRe, self).__init__(LayoutLMv2Model,
                                              LayoutLMv2ForRelationExtraction,
                                              're', pretrained, checkpoints)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[1],
147 148 149
            attention_mask=x[2],
            token_type_ids=x[3],
            image=x[4],
文幕地方's avatar
文幕地方 已提交
150 151
            position_ids=None,
            head_mask=None,
152
            labels=None,
文幕地方's avatar
文幕地方 已提交
153 154
            entities=x[5],
            relations=x[6])
155 156 157 158
        return x


class LayoutXLMForRe(NLPBaseModel):
文幕地方's avatar
文幕地方 已提交
159 160 161 162
    def __init__(self, pretrained=True, checkpoints=None, **kwargs):
        super(LayoutXLMForRe, self).__init__(LayoutXLMModel,
                                             LayoutXLMForRelationExtraction,
                                             're', pretrained, checkpoints)
163 164 165 166 167

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[1],
168 169 170
            attention_mask=x[2],
            token_type_ids=x[3],
            image=x[4],
171 172
            position_ids=None,
            head_mask=None,
173
            labels=None,
174 175 176
            entities=x[5],
            relations=x[6])
        return x