vqa_layoutlm.py 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
from paddle import nn

from paddlenlp.transformers import LayoutXLMModel, LayoutXLMForTokenClassification, LayoutXLMForRelationExtraction
from paddlenlp.transformers import LayoutLMModel, LayoutLMForTokenClassification

__all__ = ["LayoutXLMForSer", 'LayoutLMForSer']


class NLPBaseModel(nn.Layer):
    def __init__(self,
                 base_model_class,
                 model_class,
                 type='ser',
                 pretrained_model=None,
                 checkpoints=None,
                 **kwargs):
        super(NLPBaseModel, self).__init__()
        assert pretrained_model is not None or checkpoints is not None, "one of pretrained_model and checkpoints must be not None"
        if checkpoints is not None:
            self.model = model_class.from_pretrained(checkpoints)
        else:
            base_model = base_model_class.from_pretrained(pretrained_model)
            if type == 'ser':
                self.model = model_class(
                    base_model, num_classes=kwargs['num_classes'], dropout=None)
            else:
                self.model = model_class(base_model, dropout=None)
        self.out_channels = 1


class LayoutXLMForSer(NLPBaseModel):
    def __init__(self,
                 num_classes,
                 pretrained_model='layoutxlm-base-uncased',
                 checkpoints=None,
                 **kwargs):
        super(LayoutXLMForSer, self).__init__(
            LayoutXLMModel,
            LayoutXLMForTokenClassification,
            'ser',
            pretrained_model,
            checkpoints,
            num_classes=num_classes)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[2],
            image=x[3],
            attention_mask=x[4],
            token_type_ids=x[5],
            position_ids=None,
            head_mask=None,
            labels=None)
        return x[0]


class LayoutLMForSer(NLPBaseModel):
    def __init__(self,
                 num_classes,
                 pretrained_model='layoutxlm-base-uncased',
                 checkpoints=None,
                 **kwargs):
        super(LayoutLMForSer, self).__init__(
            LayoutLMModel,
            LayoutLMForTokenClassification,
            'ser',
            pretrained_model,
            checkpoints,
            num_classes=num_classes)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[2],
            attention_mask=x[4],
            token_type_ids=x[5],
            position_ids=None,
            output_hidden_states=False)
        return x


class LayoutXLMForRe(NLPBaseModel):
    def __init__(self,
                 pretrained_model='layoutxlm-base-uncased',
                 checkpoints=None,
                 **kwargs):
        super(LayoutXLMForRe, self).__init__(
            LayoutXLMModel, LayoutXLMForRelationExtraction, 're',
            pretrained_model, checkpoints)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[1],
            labels=None,
            image=x[2],
            attention_mask=x[3],
            token_type_ids=x[4],
            position_ids=None,
            head_mask=None,
            entities=x[5],
            relations=x[6])
        return x