vqa_layoutlm.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
from paddle import nn

from paddlenlp.transformers import LayoutXLMModel, LayoutXLMForTokenClassification, LayoutXLMForRelationExtraction
from paddlenlp.transformers import LayoutLMModel, LayoutLMForTokenClassification
文幕地方's avatar
文幕地方 已提交
24
from paddlenlp.transformers import LayoutLMv2Model, LayoutLMv2ForTokenClassification, LayoutLMv2ForRelationExtraction
25 26 27

__all__ = ["LayoutXLMForSer", 'LayoutLMForSer']

文幕地方's avatar
文幕地方 已提交
28 29
pretrained_model_dict = {
    LayoutXLMModel: 'layoutxlm-base-uncased',
文幕地方's avatar
文幕地方 已提交
30 31
    LayoutLMModel: 'layoutlm-base-uncased',
    LayoutLMv2Model: 'layoutlmv2-base-uncased'
文幕地方's avatar
文幕地方 已提交
32 33
}

34 35 36 37 38 39

class NLPBaseModel(nn.Layer):
    def __init__(self,
                 base_model_class,
                 model_class,
                 type='ser',
文幕地方's avatar
文幕地方 已提交
40
                 pretrained=True,
41 42 43 44 45 46
                 checkpoints=None,
                 **kwargs):
        super(NLPBaseModel, self).__init__()
        if checkpoints is not None:
            self.model = model_class.from_pretrained(checkpoints)
        else:
文幕地方's avatar
文幕地方 已提交
47 48 49 50 51 52 53 54
            pretrained_model_name = pretrained_model_dict[base_model_class]
            if pretrained:
                base_model = base_model_class.from_pretrained(
                    pretrained_model_name)
            else:
                base_model = base_model_class(
                    **base_model_class.pretrained_init_configuration[
                        pretrained_model_name])
55 56 57 58 59 60 61 62
            if type == 'ser':
                self.model = model_class(
                    base_model, num_classes=kwargs['num_classes'], dropout=None)
            else:
                self.model = model_class(base_model, dropout=None)
        self.out_channels = 1


文幕地方's avatar
文幕地方 已提交
63
class LayoutLMForSer(NLPBaseModel):
文幕地方's avatar
文幕地方 已提交
64
    def __init__(self, num_classes, pretrained=True, checkpoints=None,
65
                 **kwargs):
文幕地方's avatar
文幕地方 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        super(LayoutLMForSer, self).__init__(
            LayoutLMModel,
            LayoutLMForTokenClassification,
            'ser',
            pretrained,
            checkpoints,
            num_classes=num_classes)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[2],
            attention_mask=x[4],
            token_type_ids=x[5],
            position_ids=None,
            output_hidden_states=False)
        return x


class LayoutLMv2ForSer(NLPBaseModel):
    def __init__(self, num_classes, pretrained=True, checkpoints=None,
                 **kwargs):
        super(LayoutLMv2ForSer, self).__init__(
            LayoutLMv2Model,
            LayoutLMv2ForTokenClassification,
91
            'ser',
文幕地方's avatar
文幕地方 已提交
92
            pretrained,
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
            checkpoints,
            num_classes=num_classes)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[2],
            image=x[3],
            attention_mask=x[4],
            token_type_ids=x[5],
            position_ids=None,
            head_mask=None,
            labels=None)
        return x[0]


文幕地方's avatar
文幕地方 已提交
109
class LayoutXLMForSer(NLPBaseModel):
文幕地方's avatar
文幕地方 已提交
110
    def __init__(self, num_classes, pretrained=True, checkpoints=None,
111
                 **kwargs):
文幕地方's avatar
文幕地方 已提交
112 113 114
        super(LayoutXLMForSer, self).__init__(
            LayoutXLMModel,
            LayoutXLMForTokenClassification,
115
            'ser',
文幕地方's avatar
文幕地方 已提交
116
            pretrained,
117 118 119 120 121 122 123
            checkpoints,
            num_classes=num_classes)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[2],
文幕地方's avatar
文幕地方 已提交
124
            image=x[3],
125 126 127
            attention_mask=x[4],
            token_type_ids=x[5],
            position_ids=None,
文幕地方's avatar
文幕地方 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
            head_mask=None,
            labels=None)
        return x[0]


class LayoutLMv2ForRe(NLPBaseModel):
    def __init__(self, pretrained=True, checkpoints=None, **kwargs):
        super(LayoutLMv2ForRe, self).__init__(LayoutLMv2Model,
                                              LayoutLMv2ForRelationExtraction,
                                              're', pretrained, checkpoints)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[1],
            labels=None,
            image=x[2],
            attention_mask=x[3],
            token_type_ids=x[4],
            position_ids=None,
            head_mask=None,
            entities=x[5],
            relations=x[6])
151 152 153 154
        return x


class LayoutXLMForRe(NLPBaseModel):
文幕地方's avatar
文幕地方 已提交
155 156 157 158
    def __init__(self, pretrained=True, checkpoints=None, **kwargs):
        super(LayoutXLMForRe, self).__init__(LayoutXLMModel,
                                             LayoutXLMForRelationExtraction,
                                             're', pretrained, checkpoints)
159 160 161 162 163 164 165 166 167 168 169 170 171 172

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[1],
            labels=None,
            image=x[2],
            attention_mask=x[3],
            token_type_ids=x[4],
            position_ids=None,
            head_mask=None,
            entities=x[5],
            relations=x[6])
        return x