utility.py 20.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
L
LDOUBLEV 已提交
20 21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23
from paddle import inference
L
LDOUBLEV 已提交
24 25
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
26

L
LDOUBLEV 已提交
27

28 29
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
30 31


W
WenmuZhou 已提交
32
def init_args():
L
LDOUBLEV 已提交
33
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
34
    # params for prediction engine
L
LDOUBLEV 已提交
35 36 37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
38
    parser.add_argument("--min_subgraph_size", type=int, default=10)
L
LDOUBLEV 已提交
39
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
40
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
41

W
WenmuZhou 已提交
42
    # params for text detector
L
LDOUBLEV 已提交
43 44 45
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
46 47
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
48

W
WenmuZhou 已提交
49
    # DB parmas
L
LDOUBLEV 已提交
50
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
L
LDOUBLEV 已提交
51 52
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
L
LDOUBLEV 已提交
53
    parser.add_argument("--max_batch_size", type=int, default=10)
L
LDOUBLEV 已提交
54
    parser.add_argument("--use_dilation", type=bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
55
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
56
    # EAST parmas
L
LDOUBLEV 已提交
57 58 59 60
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
61
    # SAST parmas
L
licx 已提交
62 63
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
64
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
L
licx 已提交
65

W
WenmuZhou 已提交
66
    # params for text recognizer
L
LDOUBLEV 已提交
67 68
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
69 70
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
L
LDOUBLEV 已提交
71
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
72
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
73 74 75 76
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
77 78
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
79
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
80
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
81

J
Jethong 已提交
82 83 84 85 86 87 88 89 90
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
91
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
92
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
J
Jethong 已提交
93
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
J
Jethong 已提交
94
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
95

W
WenmuZhou 已提交
96 97 98 99 100
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
101
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
102 103 104
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
105
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
106
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
L
LDOUBLEV 已提交
107
    parser.add_argument("--warmup", type=str2bool, default=True)
W
WenmuZhou 已提交
108

L
LDOUBLEV 已提交
109
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
110
    parser.add_argument("--use_mp", type=str2bool, default=False)
111 112
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
113

L
LDOUBLEV 已提交
114 115
    parser.add_argument("--benchmark", type=bool, default=False)
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
116

W
WenmuZhou 已提交
117
    parser.add_argument("--show_log", type=str2bool, default=True)
W
WenmuZhou 已提交
118
    return parser
W
WenmuZhou 已提交
119

120

121
def parse_args():
W
WenmuZhou 已提交
122
    parser = init_args()
L
LDOUBLEV 已提交
123 124 125
    return parser.parse_args()


W
WenmuZhou 已提交
126 127 128 129 130
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
131
    elif mode == 'rec':
W
WenmuZhou 已提交
132
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
133 134
    elif mode == 'table':
        model_dir = args.table_model_dir
J
Jethong 已提交
135 136
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
137 138 139 140

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
文幕地方's avatar
文幕地方 已提交
141 142
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
W
WenmuZhou 已提交
143
    if not os.path.exists(model_file_path):
L
LDOUBLEV 已提交
144
        raise ValueError("not find model file path {}".format(model_file_path))
W
WenmuZhou 已提交
145
    if not os.path.exists(params_file_path):
L
LDOUBLEV 已提交
146 147
        raise ValueError("not find params file path {}".format(
            params_file_path))
W
WenmuZhou 已提交
148

W
WenmuZhou 已提交
149
    config = inference.Config(model_file_path, params_file_path)
W
WenmuZhou 已提交
150

L
LDOUBLEV 已提交
151 152 153 154 155 156 157 158 159 160
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

W
WenmuZhou 已提交
161 162
    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
L
LDOUBLEV 已提交
163 164
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
D
Double_V 已提交
165
                precision_mode=precision,
L
LDOUBLEV 已提交
166
                max_batch_size=args.max_batch_size,
L
LDOUBLEV 已提交
167 168
                min_subgraph_size=args.min_subgraph_size)
            # skip the minmum trt subgraph
L
LDOUBLEV 已提交
169
        if mode == "det":
L
LDOUBLEV 已提交
170 171 172 173
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_92.tmp_0": [1, 96, 20, 20],
                "conv2d_91.tmp_0": [1, 96, 10, 10],
L
LDOUBLEV 已提交
174
                "conv2d_59.tmp_0": [1, 96, 20, 20],
L
LDOUBLEV 已提交
175 176
                "nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
L
LDOUBLEV 已提交
177
                "conv2d_124.tmp_0": [1, 96, 20, 20],
L
LDOUBLEV 已提交
178 179 180 181 182 183 184 185 186 187
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20],
                "elementwise_add_7": [1, 56, 2, 2],
                "nearest_interp_v2_0.tmp_0": [1, 96, 2, 2]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_92.tmp_0": [1, 96, 400, 400],
                "conv2d_91.tmp_0": [1, 96, 200, 200],
L
LDOUBLEV 已提交
188
                "conv2d_59.tmp_0": [1, 96, 400, 400],
L
LDOUBLEV 已提交
189
                "nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
L
LDOUBLEV 已提交
190
                "conv2d_124.tmp_0": [1, 256, 400, 400],
L
LDOUBLEV 已提交
191 192 193 194 195 196 197 198 199 200 201
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400],
                "elementwise_add_7": [1, 56, 400, 400],
                "nearest_interp_v2_0.tmp_0": [1, 96, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_92.tmp_0": [1, 96, 160, 160],
                "conv2d_91.tmp_0": [1, 96, 80, 80],
L
LDOUBLEV 已提交
202
                "conv2d_59.tmp_0": [1, 96, 160, 160],
L
LDOUBLEV 已提交
203 204
                "nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
L
LDOUBLEV 已提交
205
                "conv2d_124.tmp_0": [1, 256, 160, 160],
L
LDOUBLEV 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160],
                "elementwise_add_7": [1, 56, 40, 40],
                "nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
            }
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
L
LDOUBLEV 已提交
220 221 222 223
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
L
LDOUBLEV 已提交
224 225 226
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

W
WenmuZhou 已提交
227 228
    else:
        config.disable_gpu()
L
LDOUBLEV 已提交
229 230 231
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
W
WenmuZhou 已提交
232
            # default cpu threads as 10
L
LDOUBLEV 已提交
233
            config.set_cpu_math_library_num_threads(10)
W
WenmuZhou 已提交
234 235 236 237 238
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

L
LDOUBLEV 已提交
239 240
    # enable memory optim
    config.enable_memory_optim()
L
LDOUBLEV 已提交
241
    #config.disable_glog_info()
W
WenmuZhou 已提交
242

W
WenmuZhou 已提交
243
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
W
WenmuZhou 已提交
244
    if mode == 'table':
W
WenmuZhou 已提交
245
        config.delete_pass("fc_fuse_pass")  # not supported for table
W
WenmuZhou 已提交
246
    config.switch_use_feed_fetch_ops(False)
W
WenmuZhou 已提交
247
    config.switch_ir_optim(True)
248

W
WenmuZhou 已提交
249 250
    # create predictor
    predictor = inference.create_predictor(config)
W
WenmuZhou 已提交
251 252
    input_names = predictor.get_input_names()
    for name in input_names:
W
WenmuZhou 已提交
253
        input_tensor = predictor.get_input_handle(name)
W
WenmuZhou 已提交
254 255 256
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
W
WenmuZhou 已提交
257
        output_tensor = predictor.get_output_handle(output_name)
W
WenmuZhou 已提交
258
        output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
259
    return predictor, input_tensor, output_tensors, config
W
WenmuZhou 已提交
260 261


J
Jethong 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
278
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
279 280 281 282
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
283
    return src_im
L
LDOUBLEV 已提交
284 285


L
LDOUBLEV 已提交
286 287
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
288
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
289 290 291 292 293
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
294 295
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
296 297


W
WenmuZhou 已提交
298 299 300 301 302
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
303
             font_path="./doc/fonts/simfang.ttf"):
304 305 306
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
307
        image(Image|array): RGB image
308 309 310 311
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
312
        font_path: the path of font which is used to draw text
313 314 315
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
316 317
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
318 319 320 321
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
322
            continue
W
WenmuZhou 已提交
323
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
324
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
325
    if txts is not None:
L
LDOUBLEV 已提交
326
        img = np.array(resize_img(image, input_size=600))
327
        txt_img = text_visual(
W
WenmuZhou 已提交
328 329 330 331 332 333
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
334
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
335 336
        return img
    return image
337 338


W
WenmuZhou 已提交
339 340 341 342 343 344
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
345 346 347
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
348 349

    import random
L
LDOUBLEV 已提交
350

351 352 353
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
354 355 356
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
357 358
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
359
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
360 361 362 363 364 365 366 367 368 369
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
370 371
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
372
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
373 374 375
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
376 377
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
378 379 380
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
381
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
382 383
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
384 385 386 387
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
388 389 390
    return np.array(img_show)


391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
415 416 417 418 419 420
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
421 422 423 424 425 426 427
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
428
        font_path: the path of font which is used to draw text
429 430 431 432 433 434 435 436 437
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
438 439
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
440
        return blank_img, draw_txt
L
LDOUBLEV 已提交
441

442 443 444 445
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
446
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
447 448 449

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
450
    count, index = 1, 0
451 452
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
453
        if scores[idx] < threshold or math.isnan(scores[idx]):
454 455 456 457 458 459 460 461 462 463 464
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
465
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
466 467 468 469 470
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
471
            count += 1
472 473 474
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
475
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
476
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
477
        # whether add new blank img or not
L
LDOUBLEV 已提交
478
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
479 480 481
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
482
        count += 1
483 484 485 486 487 488
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
489 490


D
dyning 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


L
LDOUBLEV 已提交
545
if __name__ == '__main__':
L
LDOUBLEV 已提交
546
    pass