program.py 26.4 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27
import paddle
import paddle.distributed as dist
from tqdm import tqdm
X
xiaoting 已提交
28 29
import cv2
import numpy as np
W
WenmuZhou 已提交
30 31
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
32 33
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
34
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
35
from ppocr.utils.logging import get_logger
36
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
37
from ppocr.utils import profiler
D
dyning 已提交
38
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
39

D
dyning 已提交
40

L
LDOUBLEV 已提交
41 42 43 44 45 46 47
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
48 49 50 51 52
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
53 54
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
55
        )
L
LDOUBLEV 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
84 85
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
86 87


88
def merge_config(config, opts):
L
LDOUBLEV 已提交
89 90 91 92 93 94
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
95
    for key, value in opts.items():
L
LDOUBLEV 已提交
96
        if "." not in key:
97 98
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
99
            else:
100
                config[key] = value
L
LDOUBLEV 已提交
101 102
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
103
            assert (
104
                sub_keys[0] in config
105 106
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
107 108
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
109 110 111 112 113
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
114
    return config
L
LDOUBLEV 已提交
115 116


117
def check_device(use_gpu, use_xpu=False, use_npu=False, use_mlu=False):
L
LDOUBLEV 已提交
118 119 120 121
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
X
xiaoting 已提交
122 123 124 125
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
L
LDOUBLEV 已提交
126 127 128
          "model on CPU"

    try:
X
xiaoting 已提交
129 130
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
W
WenmuZhou 已提交
131
        if use_gpu and not paddle.is_compiled_with_cuda():
X
xiaoting 已提交
132 133 134 135
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
L
LDOUBLEV 已提交
136
            sys.exit(1)
D
duanyanhui 已提交
137 138 139 140 141 142 143 144 145 146 147 148
        if use_npu:
            if int(paddle.version.major) != 0 and int(
                    paddle.version.major) <= 2 and int(
                        paddle.version.minor) <= 4:
                if not paddle.device.is_compiled_with_npu():
                    print(err.format("use_npu", "npu", "npu", "use_npu"))
                    sys.exit(1)
            # is_compiled_with_npu() has been updated after paddle-2.4
            else:
                if not paddle.device.is_compiled_with_custom_device("npu"):
                    print(err.format("use_npu", "npu", "npu", "use_npu"))
                    sys.exit(1)
149 150 151
        if use_mlu and not paddle.device.is_compiled_with_mlu():
            print(err.format("use_mlu", "mlu", "mlu", "use_mlu"))
            sys.exit(1)
152 153 154
    except Exception as e:
        pass

文幕地方's avatar
文幕地方 已提交
155

文幕地方's avatar
文幕地方 已提交
156 157 158 159 160
def to_float32(preds):
    if isinstance(preds, dict):
        for k in preds:
            if isinstance(preds[k], dict) or isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
文幕地方's avatar
文幕地方 已提交
161 162
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
文幕地方's avatar
文幕地方 已提交
163 164 165 166 167 168
    elif isinstance(preds, list):
        for k in range(len(preds)):
            if isinstance(preds[k], dict):
                preds[k] = to_float32(preds[k])
            elif isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
文幕地方's avatar
文幕地方 已提交
169 170 171
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
    elif isinstance(preds, paddle.Tensor):
172
        preds = preds.astype(paddle.float32)
文幕地方's avatar
文幕地方 已提交
173
    return preds
174

文幕地方's avatar
文幕地方 已提交
175

W
WenmuZhou 已提交
176
def train(config,
D
dyning 已提交
177 178 179
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
180 181 182 183 184 185 186 187
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
188
          log_writer=None,
文幕地方's avatar
文幕地方 已提交
189
          scaler=None,
文幕地方's avatar
文幕地方 已提交
190 191
          amp_level='O2',
          amp_custom_black_list=[]):
W
WenmuZhou 已提交
192 193
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
194
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
195 196 197 198
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
199
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
200

D
dyning 已提交
201
    global_step = 0
202 203
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
204 205 206 207
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
208 209
        if len(valid_dataloader) == 0:
            logger.info(
210 211
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
212 213
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
214
        logger.info(
215 216
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
217
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
218 219
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
220 221
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
222 223 224 225
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
226
    model_average = False
W
WenmuZhou 已提交
227 228
    model.train()

T
tink2123 已提交
229
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
andyjpaddle 已提交
230
    extra_input_models = [
231
        "SRN", "NRTR", "SAR", "SEED", "SVTR", "SVTR_LCNet", "SPIN", "VisionLAN",
Z
zhiminzhang0830 已提交
232
        "RobustScanner", "RFL", 'DRRG', 'SATRN'
A
andyjpaddle 已提交
233
    ]
A
andyjpaddle 已提交
234
    extra_input = False
A
andyjpaddle 已提交
235
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
236 237 238
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
239 240
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
241
    try:
L
fix bug  
LDOUBLEV 已提交
242
        model_type = config['Architecture']['model_type']
243
    except:
L
fix bug  
LDOUBLEV 已提交
244
        model_type = None
A
andyjpaddle 已提交
245

T
tink2123 已提交
246
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
247

248 249 250 251
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
252 253
    train_reader_cost = 0.0
    train_batch_cost = 0.0
254
    reader_start = time.time()
255
    eta_meter = AverageMeter()
256 257 258

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
259

T
tink2123 已提交
260
    for epoch in range(start_epoch, epoch_num + 1):
261 262 263 264 265
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
X
xiaoting 已提交
266

W
WenmuZhou 已提交
267
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
268
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
269
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
270
            if idx >= max_iter:
W
WenmuZhou 已提交
271 272 273
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
274
            if use_srn:
T
tink2123 已提交
275
                model_average = True
S
stephon 已提交
276 277
            # use amp
            if scaler:
278 279 280
                with paddle.amp.auto_cast(
                        level=amp_level,
                        custom_black_list=amp_custom_black_list):
S
stephon 已提交
281 282
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
283
                    elif model_type in ["kie"]:
A
andyjpaddle 已提交
284
                        preds = model(batch)
D
dorren 已提交
285 286
                    elif algorithm in ['CAN']:
                        preds = model(batch[:3])
S
stephon 已提交
287 288
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
289 290 291 292 293 294
                preds = to_float32(preds)
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
T
tink2123 已提交
295
            else:
S
stephon 已提交
296 297
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
298
                elif model_type in ["kie", 'sr']:
L
LDOUBLEV 已提交
299
                    preds = model(batch)
D
dorren 已提交
300 301
                elif algorithm in ['CAN']:
                    preds = model(batch[:3])
S
stephon 已提交
302 303
                else:
                    preds = model(images)
文幕地方's avatar
文幕地方 已提交
304 305
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
S
stephon 已提交
306 307
                avg_loss.backward()
                optimizer.step()
X
xiaoting 已提交
308

W
WenmuZhou 已提交
309
            optimizer.clear_grad()
W
WenmuZhou 已提交
310

311 312
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
X
xiaoting 已提交
313
                if model_type in ['kie', 'sr']:
314
                    eval_class(preds, batch)
文幕地方's avatar
文幕地方 已提交
315 316 317
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
D
dorren 已提交
318 319 320
                elif algorithm in ['CAN']:
                    model_type = 'can'
                    eval_class(preds[0], batch[2:], epoch_reset=(idx == 0))
321
                else:
A
andyjpaddle 已提交
322 323 324 325
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
A
andyjpaddle 已提交
326 327 328
                    elif config['Loss']['name'] in ['VLLoss']:
                        post_result = post_process_class(preds, batch[1],
                                                         batch[-1])
A
andyjpaddle 已提交
329 330
                    else:
                        post_result = post_process_class(preds, batch[1])
331 332 333 334
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

335 336 337
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
338
            global_step += 1
文幕地方's avatar
文幕地方 已提交
339
            total_samples += len(images)
W
WenmuZhou 已提交
340

D
dyning 已提交
341 342
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
343 344 345 346 347 348

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

349
            if log_writer is not None and dist.get_rank() == 0:
文幕地方's avatar
文幕地方 已提交
350 351
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
352

353 354 355
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
356
                logs = train_stats.log()
L
LDOUBLEV 已提交
357

358 359 360 361
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
X
xiaoting 已提交
362 363
                    '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
                    'ips: {:.5f} samples/s, eta: {}'.format(
364 365 366 367 368
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
369
                logger.info(strs)
370

文幕地方's avatar
文幕地方 已提交
371
                total_samples = 0
372 373
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
374 375
            # eval
            if global_step > start_eval_step and \
376 377
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
378 379 380 381 382 383 384
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
385 386 387 388 389
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
390
                    model_type,
文幕地方's avatar
文幕地方 已提交
391
                    extra_input=extra_input,
文幕地方's avatar
文幕地方 已提交
392 393 394
                    scaler=scaler,
                    amp_level=amp_level,
                    amp_custom_black_list=amp_custom_black_list)
L
LDOUBLEV 已提交
395 396 397
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
398 399

                # logger metric
400
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
401 402
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)
403

L
LDOUBLEV 已提交
404
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
405
                        main_indicator]:
L
LDOUBLEV 已提交
406
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
407 408 409 410 411 412
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
413
                        config,
W
WenmuZhou 已提交
414 415 416
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
417 418
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
419
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
420 421 422 423
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
424
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
425 426 427 428 429 430 431 432 433 434 435 436
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)
437

文幕地方's avatar
文幕地方 已提交
438
            reader_start = time.time()
W
WenmuZhou 已提交
439 440 441 442 443 444
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
445
                config,
W
WenmuZhou 已提交
446 447 448
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
449 450
                epoch=epoch,
                global_step=global_step)
451

452 453
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
454

W
WenmuZhou 已提交
455 456 457 458 459 460
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
461
                config,
W
WenmuZhou 已提交
462 463 464
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
465 466
                epoch=epoch,
                global_step=global_step)
467
            if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
468 469
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))
470

L
LDOUBLEV 已提交
471
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
472 473
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
474 475
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
476 477 478
    return


M
refine  
MissPenguin 已提交
479 480 481 482
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
483
         model_type=None,
文幕地方's avatar
文幕地方 已提交
484
         extra_input=False,
文幕地方's avatar
文幕地方 已提交
485 486
         scaler=None,
         amp_level='O2',
487
         amp_custom_black_list=[]):
W
WenmuZhou 已提交
488 489 490 491
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
492 493 494 495 496
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
497 498
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
X
xiaoting 已提交
499
        sum_images = 0
W
WenmuZhou 已提交
500
        for idx, batch in enumerate(valid_dataloader):
501
            if idx >= max_iter:
W
WenmuZhou 已提交
502
                break
W
fix bug  
WenmuZhou 已提交
503
            images = batch[0]
W
WenmuZhou 已提交
504
            start = time.time()
文幕地方's avatar
文幕地方 已提交
505 506 507

            # use amp
            if scaler:
508 509 510
                with paddle.amp.auto_cast(
                        level=amp_level,
                        custom_black_list=amp_custom_black_list):
文幕地方's avatar
文幕地方 已提交
511 512
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
513
                    elif model_type in ["kie"]:
文幕地方's avatar
文幕地方 已提交
514
                        preds = model(batch)
D
dorren 已提交
515 516
                    elif model_type in ['can']:
                        preds = model(batch[:3])
X
xiaoting 已提交
517 518 519 520
                    elif model_type in ['sr']:
                        preds = model(batch)
                        sr_img = preds["sr_img"]
                        lr_img = preds["lr_img"]
文幕地方's avatar
文幕地方 已提交
521 522
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
523
                preds = to_float32(preds)
X
xiaoting 已提交
524
            else:
文幕地方's avatar
文幕地方 已提交
525 526
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
527
                elif model_type in ["kie"]:
文幕地方's avatar
文幕地方 已提交
528
                    preds = model(batch)
D
dorren 已提交
529 530
                elif model_type in ['can']:
                    preds = model(batch[:3])
X
xiaoting 已提交
531 532 533 534
                elif model_type in ['sr']:
                    preds = model(batch)
                    sr_img = preds["sr_img"]
                    lr_img = preds["lr_img"]
文幕地方's avatar
文幕地方 已提交
535 536 537
                else:
                    preds = model(images)

538 539 540 541 542 543
            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
544 545 546
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
547 548 549 550 551 552
            if model_type in ['table', 'kie']:
                if post_process_class is None:
                    eval_class(preds, batch_numpy)
                else:
                    post_result = post_process_class(preds, batch_numpy)
                    eval_class(post_result, batch_numpy)
X
xiaoting 已提交
553 554
            elif model_type in ['sr']:
                eval_class(preds, batch_numpy)
D
dorren 已提交
555
            elif model_type in ['can']:
556
                eval_class(preds[0], batch_numpy[2:], epoch_reset=(idx == 0))
M
MissPenguin 已提交
557
            else:
558 559
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
560

W
fix bug  
WenmuZhou 已提交
561
            pbar.update(1)
W
WenmuZhou 已提交
562
            total_frame += len(images)
X
xiaoting 已提交
563
            sum_images += 1
L
LDOUBLEV 已提交
564 565
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
566

W
fix bug  
WenmuZhou 已提交
567
    pbar.close()
W
WenmuZhou 已提交
568
    model.train()
L
LDOUBLEV 已提交
569 570
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
571

T
tink2123 已提交
572

B
Bin Lu 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


622
def preprocess(is_train=False):
L
licx 已提交
623
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
624
    profiler_options = FLAGS.profiler_options
L
licx 已提交
625
    config = load_config(FLAGS.config)
626
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
627
    profile_dic = {"profiler_options": FLAGS.profiler_options}
628
    config = merge_config(config, profile_dic)
L
licx 已提交
629

W
WenmuZhou 已提交
630 631 632 633 634 635 636 637 638 639
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
640
    logger = get_logger(log_file=log_file)
L
licx 已提交
641 642

    # check if set use_gpu=True in paddlepaddle cpu version
643
    use_gpu = config['Global'].get('use_gpu', False)
X
xiaoting 已提交
644
    use_xpu = config['Global'].get('use_xpu', False)
645
    use_npu = config['Global'].get('use_npu', False)
646
    use_mlu = config['Global'].get('use_mlu', False)
647

W
WenmuZhou 已提交
648 649
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
650
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
651
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
W
wangjingyeye 已提交
652
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
653 654 655
        'SVTR', 'SVTR_LCNet', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN',
        'VisionLAN', 'Gestalt', 'SLANet', 'RobustScanner', 'CT', 'RFL', 'DRRG',
        'CAN', 'Telescope', 'SATRN'
W
WenmuZhou 已提交
656
    ]
L
licx 已提交
657

658
    if use_xpu:
X
xiaoting 已提交
659
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
660 661
    elif use_npu:
        device = 'npu:{0}'.format(os.getenv('FLAGS_selected_npus', 0))
662 663
    elif use_mlu:
        device = 'mlu:{0}'.format(os.getenv('FLAGS_selected_mlus', 0))
X
xiaoting 已提交
664 665 666
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
667
    check_device(use_gpu, use_xpu, use_npu, use_mlu)
X
xiaoting 已提交
668

W
WenmuZhou 已提交
669
    device = paddle.set_device(device)
D
dyning 已提交
670

D
dyning 已提交
671
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
672

673 674
    loggers = []

675
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
676
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
677
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
A
andyjpaddle 已提交
678
        log_writer = VDLLogger(vdl_writer_path)
679
        loggers.append(log_writer)
文幕地方's avatar
文幕地方 已提交
680 681
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
682 683 684 685 686 687 688 689
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
690
        loggers.append(log_writer)
D
dyning 已提交
691
    else:
692
        log_writer = None
D
dyning 已提交
693
    print_dict(config, logger)
694 695 696 697 698 699

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
700 701
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
702
    return config, device, logger, log_writer