app_single.py 17.5 KB
Newer Older
走神的阿圆's avatar
走神的阿圆 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# coding: utf-8
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from flask import Flask, request, render_template
S
shenyuhan 已提交
15
from paddlehub.serving.model_service.model_manage import default_module_manager
走神的阿圆's avatar
走神的阿圆 已提交
16 17 18 19 20
from paddlehub.common import utils
import time
import os
import base64
import logging
走神的阿圆's avatar
走神的阿圆 已提交
21
import shutil
走神的阿圆's avatar
走神的阿圆 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

cv_module_method = {
    "vgg19_imagenet": "predict_classification",
    "vgg16_imagenet": "predict_classification",
    "vgg13_imagenet": "predict_classification",
    "vgg11_imagenet": "predict_classification",
    "shufflenet_v2_imagenet": "predict_classification",
    "se_resnext50_32x4d_imagenet": "predict_classification",
    "se_resnext101_32x4d_imagenet": "predict_classification",
    "resnet_v2_50_imagenet": "predict_classification",
    "resnet_v2_34_imagenet": "predict_classification",
    "resnet_v2_18_imagenet": "predict_classification",
    "resnet_v2_152_imagenet": "predict_classification",
    "resnet_v2_101_imagenet": "predict_classification",
    "pnasnet_imagenet": "predict_classification",
    "nasnet_imagenet": "predict_classification",
    "mobilenet_v2_imagenet": "predict_classification",
    "googlenet_imagenet": "predict_classification",
    "alexnet_imagenet": "predict_classification",
    "yolov3_coco2017": "predict_object_detection",
    "ultra_light_fast_generic_face_detector_1mb_640":
    "predict_object_detection",
    "ultra_light_fast_generic_face_detector_1mb_320":
    "predict_object_detection",
    "ssd_mobilenet_v1_pascal": "predict_object_detection",
    "pyramidbox_face_detection": "predict_object_detection",
    "faster_rcnn_coco2017": "predict_object_detection",
    "cyclegan_cityscapes": "predict_gan",
    "deeplabv3p_xception65_humanseg": "predict_semantic_segmentation",
走神的阿圆's avatar
走神的阿圆 已提交
51 52 53
    "ace2p": "predict_semantic_segmentation",
    "pyramidbox_lite_server_mask": "predict_mask",
    "pyramidbox_lite_mobile_mask": "predict_mask"
走神的阿圆's avatar
走神的阿圆 已提交
54 55 56
}


S
shenyuhan 已提交
57
def predict_nlp(module, input_text, req_id, batch_size, extra=None):
走神的阿圆's avatar
走神的阿圆 已提交
58 59 60
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
S
shenyuhan 已提交
61 62 63
        data = input_text
        if module.name == "lac" and extra.get("user_dict", []) != []:
            res = predict_method(
64
                data=data,
S
shenyuhan 已提交
65
                user_dict=extra.get("user_dict", [])[0],
66 67
                use_gpu=use_gpu,
                batch_size=batch_size)
S
shenyuhan 已提交
68 69 70
        else:
            res = predict_method(
                data=data, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
71 72 73
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
S
shenyuhan 已提交
74 75 76 77 78 79 80
        return {"results": "Please check data format!"}
    finally:
        user_dict = extra.get("user_dict", [])
        for item in user_dict:
            if os.path.exists(item):
                os.remove(item)
    return {"results": res}
走神的阿圆's avatar
走神的阿圆 已提交
81 82


S
shenyuhan 已提交
83
def predict_classification(module, input_img, id, batch_size, extra={}):
走神的阿圆's avatar
走神的阿圆 已提交
84 85 86 87 88
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
        input_img = {"image": input_img}
89 90
        results = predict_method(
            data=input_img, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
91 92 93 94
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
S
shenyuhan 已提交
95 96 97 98
    finally:
        for item in input_img["image"]:
            if os.path.exists(item):
                os.remove(item)
走神的阿圆's avatar
走神的阿圆 已提交
99 100 101
    return results


102
def predict_gan(module, input_img, id, batch_size, extra={}):
走神的阿圆's avatar
走神的阿圆 已提交
103 104 105 106 107
    output_folder = module.name.split("_")[0] + "_" + "output"
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
S
shenyuhan 已提交
108
        extra.update({"image": input_img})
走神的阿圆's avatar
走神的阿圆 已提交
109
        input_img = {"image": input_img}
110
        results = predict_method(
S
shenyuhan 已提交
111
            data=extra, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
112 113 114 115
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
S
shenyuhan 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    finally:
        base64_list = []
        results_pack = []
        input_img = input_img.get("image", [])
        for index in range(len(input_img)):
            item = input_img[index]
            output_file = results[index].split(" ")[-1]
            with open(output_file, "rb") as fp:
                b_head = "data:image/" + item.split(".")[-1] + ";base64"
                b_body = base64.b64encode(fp.read())
                b_body = str(b_body).replace("b'", "").replace("'", "")
                b_img = b_head + "," + b_body
                base64_list.append(b_img)
                results[index] = results[index].replace(id + "_", "")
                results[index] = {"path": results[index]}
                results[index].update({"base64": b_img})
                results_pack.append(results[index])
            os.remove(item)
            os.remove(output_file)
走神的阿圆's avatar
走神的阿圆 已提交
135 136 137
    return results_pack


走神的阿圆's avatar
走神的阿圆 已提交
138
def predict_mask(module, input_img, id, batch_size, extra=None, r_img=True):
走神的阿圆's avatar
走神的阿圆 已提交
139 140 141 142 143 144 145 146 147 148 149
    output_folder = "detection_result"
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
        data = {}
        if input_img is not None:
            input_img = {"image": input_img}
            data.update(input_img)
        if extra is not None:
            data.update(extra)
走神的阿圆's avatar
走神的阿圆 已提交
150
            r_img = False if "r_img" in extra.keys() else True
走神的阿圆's avatar
走神的阿圆 已提交
151
        results = predict_method(
走神的阿圆's avatar
fix ci  
走神的阿圆 已提交
152 153 154 155
            data=data,
            visualization=r_img,
            use_gpu=use_gpu,
            batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        results = utils.handle_mask_results(results)
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
    finally:
        base64_list = []
        results_pack = []
        if input_img is not None:
            if r_img is False:
                for index in range(len(results)):
                    results[index]["path"] = ""
                results_pack = results
            else:
                input_img = input_img.get("image", [])
                for index in range(len(input_img)):
                    item = input_img[index]
                    with open(os.path.join(output_folder, item), "rb") as fp:
                        b_head = "data:image/" + item.split(".")[-1] + ";base64"
                        b_body = base64.b64encode(fp.read())
                        b_body = str(b_body).replace("b'", "").replace("'", "")
                        b_img = b_head + "," + b_body
                        base64_list.append(b_img)
                        results[index]["path"] = results[index]["path"].replace(
                            id + "_", "") if results[index]["path"] != "" \
                            else ""

                        results[index].update({"base64": b_img})
                        results_pack.append(results[index])
                    os.remove(item)
                    os.remove(os.path.join(output_folder, item))
        else:
            results_pack = results

    return results_pack


S
shenyuhan 已提交
193
def predict_object_detection(module, input_img, id, batch_size, extra={}):
走神的阿圆's avatar
走神的阿圆 已提交
194
    output_folder = "detection_result"
走神的阿圆's avatar
走神的阿圆 已提交
195 196 197 198 199
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
        input_img = {"image": input_img}
200 201
        results = predict_method(
            data=input_img, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
202 203 204 205
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
S
shenyuhan 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    finally:
        base64_list = []
        results_pack = []
        input_img = input_img.get("image", [])
        for index in range(len(input_img)):
            item = input_img[index]
            with open(os.path.join(output_folder, item), "rb") as fp:
                b_head = "data:image/" + item.split(".")[-1] + ";base64"
                b_body = base64.b64encode(fp.read())
                b_body = str(b_body).replace("b'", "").replace("'", "")
                b_img = b_head + "," + b_body
                base64_list.append(b_img)
                results[index]["path"] = results[index]["path"].replace(
                    id + "_", "")
                results[index].update({"base64": b_img})
                results_pack.append(results[index])
            os.remove(item)
            os.remove(os.path.join(output_folder, item))
走神的阿圆's avatar
走神的阿圆 已提交
224 225 226
    return results_pack


S
shenyuhan 已提交
227
def predict_semantic_segmentation(module, input_img, id, batch_size, extra={}):
走神的阿圆's avatar
走神的阿圆 已提交
228 229 230 231 232 233
    output_folder = module.name.split("_")[-1] + "_" + "output"
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
        input_img = {"image": input_img}
234 235
        results = predict_method(
            data=input_img, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
236 237 238 239
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
S
shenyuhan 已提交
240 241 242 243 244
    finally:
        base64_list = []
        results_pack = []
        input_img = input_img.get("image", [])
        for index in range(len(input_img)):
走神的阿圆's avatar
走神的阿圆 已提交
245
            # special
S
shenyuhan 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
            item = input_img[index]
            output_file_path = ""
            with open(results[index]["processed"], "rb") as fp:
                b_head = "data:image/png;base64"
                b_body = base64.b64encode(fp.read())
                b_body = str(b_body).replace("b'", "").replace("'", "")
                b_img = b_head + "," + b_body
                base64_list.append(b_img)
                output_file_path = results[index]["processed"]
                results[index]["origin"] = results[index]["origin"].replace(
                    id + "_", "")
                results[index]["processed"] = results[index][
                    "processed"].replace(id + "_", "")
                results[index].update({"base64": b_img})
                results_pack.append(results[index])
            os.remove(item)
            if output_file_path != "":
                os.remove(output_file_path)
走神的阿圆's avatar
走神的阿圆 已提交
264 265 266
    return results_pack


267 268 269 270 271 272 273 274 275
def create_app(init_flag=False, configs=None):
    if init_flag is False:
        if configs is None:
            raise RuntimeError("Lack of necessary configs.")
        global use_gpu, time_out
        time_out = 60
        use_gpu = configs.get("use_gpu", False)
        config_with_file(configs.get("modules_info", []))

走神的阿圆's avatar
走神的阿圆 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    app_instance = Flask(__name__)
    app_instance.config["JSON_AS_ASCII"] = False
    gunicorn_logger = logging.getLogger('gunicorn.error')
    app_instance.logger.handlers = gunicorn_logger.handlers
    app_instance.logger.setLevel(gunicorn_logger.level)

    @app_instance.route("/", methods=["GET", "POST"])
    def index():
        return render_template("main.html")

    @app_instance.before_request
    def before_request():
        request.data = {"id": utils.md5(request.remote_addr + str(time.time()))}

    @app_instance.route("/get/modules", methods=["GET", "POST"])
    def get_modules_info():
        global nlp_module, cv_module
        module_info = {}
        if len(nlp_module) > 0:
            module_info.update({"nlp_module": [{"Choose...": "Choose..."}]})
            for item in nlp_module:
                module_info["nlp_module"].append({item: item})
        if len(cv_module) > 0:
            module_info.update({"cv_module": [{"Choose...": "Choose..."}]})
            for item in cv_module:
                module_info["cv_module"].append({item: item})
        return {"module_info": module_info}

    @app_instance.route("/predict/image/<module_name>", methods=["POST"])
    def predict_image(module_name):
S
shenyuhan 已提交
306 307
        if request.path.split("/")[-1] not in cv_module:
            return {"error": "Module {} is not available.".format(module_name)}
走神的阿圆's avatar
走神的阿圆 已提交
308
        req_id = request.data.get("id")
309
        global use_gpu, batch_size_dict
走神的阿圆's avatar
走神的阿圆 已提交
310
        img_base64 = request.form.getlist("image")
S
shenyuhan 已提交
311 312 313
        extra_info = {}
        for item in list(request.form.keys()):
            extra_info.update({item: request.form.getlist(item)})
走神的阿圆's avatar
走神的阿圆 已提交
314 315 316 317 318 319 320 321

        for key in extra_info.keys():
            if isinstance(extra_info[key], list):
                extra_info[key] = utils.base64s_to_cvmats(
                    eval(extra_info[key][0])["b64s"]) if isinstance(
                        extra_info[key][0], str
                    ) and "b64s" in extra_info[key][0] else extra_info[key]

走神的阿圆's avatar
走神的阿圆 已提交
322 323 324 325 326 327 328
        file_name_list = []
        if img_base64 != []:
            for item in img_base64:
                ext = item.split(";")[0].split("/")[-1]
                if ext not in ["jpeg", "jpg", "png"]:
                    return {"result": "Unrecognized file type"}
                filename = req_id + "_" \
走神的阿圆's avatar
走神的阿圆 已提交
329
                           + utils.md5(str(time.time()) + item[0:20]) \
走神的阿圆's avatar
走神的阿圆 已提交
330 331 332 333 334 335 336 337 338 339 340 341
                           + "." \
                           + ext
                img_data = base64.b64decode(item.split(',')[-1])
                file_name_list.append(filename)
                with open(filename, "wb") as fp:
                    fp.write(img_data)
        else:
            file = request.files.getlist("image")
            for item in file:
                file_name = req_id + "_" + item.filename
                item.save(file_name)
                file_name_list.append(file_name)
S
shenyuhan 已提交
342
        module = default_module_manager.get_module(module_name)
走神的阿圆's avatar
走神的阿圆 已提交
343 344 345 346 347 348
        predict_func_name = cv_module_method.get(module_name, "")
        if predict_func_name != "":
            predict_func = eval(predict_func_name)
        else:
            module_type = module.type.split("/")[-1].replace("-", "_").lower()
            predict_func = eval("predict_" + module_type)
349
        batch_size = batch_size_dict.get(module_name, 1)
走神的阿圆's avatar
走神的阿圆 已提交
350 351 352 353
        if file_name_list == []:
            file_name_list = None
        if extra_info == {}:
            extra_info = None
S
shenyuhan 已提交
354 355
        results = predict_func(module, file_name_list, req_id, batch_size,
                               extra_info)
走神的阿圆's avatar
走神的阿圆 已提交
356 357 358 359 360
        r = {"results": str(results)}
        return r

    @app_instance.route("/predict/text/<module_name>", methods=["POST"])
    def predict_text(module_name):
S
shenyuhan 已提交
361 362
        if request.path.split("/")[-1] not in nlp_module:
            return {"error": "Module {} is not available.".format(module_name)}
走神的阿圆's avatar
走神的阿圆 已提交
363
        req_id = request.data.get("id")
S
shenyuhan 已提交
364 365 366 367 368 369 370 371 372 373
        inputs = {}
        for item in list(request.form.keys()):
            inputs.update({item: request.form.getlist(item)})
        files = {}
        for file_key in list(request.files.keys()):
            files[file_key] = []
            for file in request.files.getlist(file_key):
                file_name = req_id + "_" + file.filename
                files[file_key].append(file_name)
                file.save(file_name)
S
shenyuhan 已提交
374
        module = default_module_manager.get_module(module_name)
S
shenyuhan 已提交
375 376 377 378 379 380 381
        results = predict_nlp(
            module=module,
            input_text=inputs,
            req_id=req_id,
            batch_size=batch_size_dict.get(module_name, 1),
            extra=files)
        return results
走神的阿圆's avatar
走神的阿圆 已提交
382 383 384 385 386

    return app_instance


def config_with_file(configs):
387
    global nlp_module, cv_module, batch_size_dict
走神的阿圆's avatar
走神的阿圆 已提交
388 389
    nlp_module = []
    cv_module = []
390
    batch_size_dict = {}
走神的阿圆's avatar
走神的阿圆 已提交
391 392 393 394 395 396
    for item in configs:
        print(item)
        if item["category"] == "CV":
            cv_module.append(item["module"])
        elif item["category"] == "NLP":
            nlp_module.append(item["module"])
397
        batch_size_dict.update({item["module"]: item["batch_size"]})
S
shenyuhan 已提交
398
        default_module_manager.load_module([item["module"]])
走神的阿圆's avatar
走神的阿圆 已提交
399 400 401 402 403 404 405 406 407 408 409


def run(is_use_gpu=False, configs=None, port=8866, timeout=60):
    global use_gpu, time_out
    time_out = timeout
    use_gpu = is_use_gpu
    if configs is not None:
        config_with_file(configs)
    else:
        print("Start failed cause of missing configuration.")
        return
410 411
    my_app = create_app(init_flag=True)
    my_app.run(host="0.0.0.0", port=port, debug=False, threaded=False)
走神的阿圆's avatar
走神的阿圆 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    print("PaddleHub-Serving has been stopped.")


if __name__ == "__main__":
    configs = [{
        'category': 'NLP',
        u'queue_size': 20,
        u'version': u'1.0.0',
        u'module': 'lac',
        u'batch_size': 20
    },
               {
                   'category': 'NLP',
                   u'queue_size': 20,
                   u'version': u'1.0.0',
                   u'module': 'senta_lstm',
                   u'batch_size': 20
               },
               {
                   'category': 'CV',
                   u'queue_size': 20,
                   u'version': u'1.0.0',
                   u'module': 'yolov3_coco2017',
                   u'batch_size': 20
               },
               {
                   'category': 'CV',
                   u'queue_size': 20,
                   u'version': u'1.0.0',
                   u'module': 'faster_rcnn_coco2017',
                   u'batch_size': 20
               }]
    run(is_use_gpu=False, configs=configs)