app_single.py 14.7 KB
Newer Older
走神的阿圆's avatar
走神的阿圆 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# coding: utf-8
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from flask import Flask, request, render_template
S
shenyuhan 已提交
15
from paddlehub.serving.model_service.model_manage import default_module_manager
走神的阿圆's avatar
走神的阿圆 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
from paddlehub.common import utils
import time
import os
import base64
import logging

cv_module_method = {
    "vgg19_imagenet": "predict_classification",
    "vgg16_imagenet": "predict_classification",
    "vgg13_imagenet": "predict_classification",
    "vgg11_imagenet": "predict_classification",
    "shufflenet_v2_imagenet": "predict_classification",
    "se_resnext50_32x4d_imagenet": "predict_classification",
    "se_resnext101_32x4d_imagenet": "predict_classification",
    "resnet_v2_50_imagenet": "predict_classification",
    "resnet_v2_34_imagenet": "predict_classification",
    "resnet_v2_18_imagenet": "predict_classification",
    "resnet_v2_152_imagenet": "predict_classification",
    "resnet_v2_101_imagenet": "predict_classification",
    "pnasnet_imagenet": "predict_classification",
    "nasnet_imagenet": "predict_classification",
    "mobilenet_v2_imagenet": "predict_classification",
    "googlenet_imagenet": "predict_classification",
    "alexnet_imagenet": "predict_classification",
    "yolov3_coco2017": "predict_object_detection",
    "ultra_light_fast_generic_face_detector_1mb_640":
    "predict_object_detection",
    "ultra_light_fast_generic_face_detector_1mb_320":
    "predict_object_detection",
    "ssd_mobilenet_v1_pascal": "predict_object_detection",
    "pyramidbox_face_detection": "predict_object_detection",
    "faster_rcnn_coco2017": "predict_object_detection",
    "cyclegan_cityscapes": "predict_gan",
    "deeplabv3p_xception65_humanseg": "predict_semantic_segmentation",
    "ace2p": "predict_semantic_segmentation"
}


S
shenyuhan 已提交
54
def predict_nlp(module, input_text, req_id, batch_size, extra=None):
走神的阿圆's avatar
走神的阿圆 已提交
55 56 57
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
S
shenyuhan 已提交
58 59 60
        data = input_text
        if module.name == "lac" and extra.get("user_dict", []) != []:
            res = predict_method(
61
                data=data,
S
shenyuhan 已提交
62
                user_dict=extra.get("user_dict", [])[0],
63 64
                use_gpu=use_gpu,
                batch_size=batch_size)
S
shenyuhan 已提交
65 66 67
        else:
            res = predict_method(
                data=data, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
68 69 70
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
S
shenyuhan 已提交
71 72 73 74 75 76 77
        return {"results": "Please check data format!"}
    finally:
        user_dict = extra.get("user_dict", [])
        for item in user_dict:
            if os.path.exists(item):
                os.remove(item)
    return {"results": res}
走神的阿圆's avatar
走神的阿圆 已提交
78 79


S
shenyuhan 已提交
80
def predict_classification(module, input_img, id, batch_size, extra={}):
走神的阿圆's avatar
走神的阿圆 已提交
81 82 83 84 85
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
        input_img = {"image": input_img}
86 87
        results = predict_method(
            data=input_img, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
88 89 90 91
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
S
shenyuhan 已提交
92 93 94 95
    finally:
        for item in input_img["image"]:
            if os.path.exists(item):
                os.remove(item)
走神的阿圆's avatar
走神的阿圆 已提交
96 97 98
    return results


99
def predict_gan(module, input_img, id, batch_size, extra={}):
走神的阿圆's avatar
走神的阿圆 已提交
100 101 102 103 104
    output_folder = module.name.split("_")[0] + "_" + "output"
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
S
shenyuhan 已提交
105
        extra.update({"image": input_img})
走神的阿圆's avatar
走神的阿圆 已提交
106
        input_img = {"image": input_img}
107
        results = predict_method(
S
shenyuhan 已提交
108
            data=extra, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
109 110 111 112
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
S
shenyuhan 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    finally:
        base64_list = []
        results_pack = []
        input_img = input_img.get("image", [])
        for index in range(len(input_img)):
            item = input_img[index]
            output_file = results[index].split(" ")[-1]
            with open(output_file, "rb") as fp:
                b_head = "data:image/" + item.split(".")[-1] + ";base64"
                b_body = base64.b64encode(fp.read())
                b_body = str(b_body).replace("b'", "").replace("'", "")
                b_img = b_head + "," + b_body
                base64_list.append(b_img)
                results[index] = results[index].replace(id + "_", "")
                results[index] = {"path": results[index]}
                results[index].update({"base64": b_img})
                results_pack.append(results[index])
            os.remove(item)
            os.remove(output_file)
走神的阿圆's avatar
走神的阿圆 已提交
132 133 134
    return results_pack


S
shenyuhan 已提交
135
def predict_object_detection(module, input_img, id, batch_size, extra={}):
走神的阿圆's avatar
走神的阿圆 已提交
136 137 138 139 140 141
    output_folder = "output"
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
        input_img = {"image": input_img}
142 143
        results = predict_method(
            data=input_img, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
144 145 146 147
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
S
shenyuhan 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    finally:
        base64_list = []
        results_pack = []
        input_img = input_img.get("image", [])
        for index in range(len(input_img)):
            item = input_img[index]
            with open(os.path.join(output_folder, item), "rb") as fp:
                b_head = "data:image/" + item.split(".")[-1] + ";base64"
                b_body = base64.b64encode(fp.read())
                b_body = str(b_body).replace("b'", "").replace("'", "")
                b_img = b_head + "," + b_body
                base64_list.append(b_img)
                results[index]["path"] = results[index]["path"].replace(
                    id + "_", "")
                results[index].update({"base64": b_img})
                results_pack.append(results[index])
            os.remove(item)
            os.remove(os.path.join(output_folder, item))
走神的阿圆's avatar
走神的阿圆 已提交
166 167 168
    return results_pack


S
shenyuhan 已提交
169
def predict_semantic_segmentation(module, input_img, id, batch_size, extra={}):
走神的阿圆's avatar
走神的阿圆 已提交
170 171 172 173 174 175
    output_folder = module.name.split("_")[-1] + "_" + "output"
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
        input_img = {"image": input_img}
176 177
        results = predict_method(
            data=input_img, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
178 179 180 181
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
S
shenyuhan 已提交
182 183 184 185 186
    finally:
        base64_list = []
        results_pack = []
        input_img = input_img.get("image", [])
        for index in range(len(input_img)):
走神的阿圆's avatar
走神的阿圆 已提交
187
            # special
S
shenyuhan 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
            item = input_img[index]
            output_file_path = ""
            with open(results[index]["processed"], "rb") as fp:
                b_head = "data:image/png;base64"
                b_body = base64.b64encode(fp.read())
                b_body = str(b_body).replace("b'", "").replace("'", "")
                b_img = b_head + "," + b_body
                base64_list.append(b_img)
                output_file_path = results[index]["processed"]
                results[index]["origin"] = results[index]["origin"].replace(
                    id + "_", "")
                results[index]["processed"] = results[index][
                    "processed"].replace(id + "_", "")
                results[index].update({"base64": b_img})
                results_pack.append(results[index])
            os.remove(item)
            if output_file_path != "":
                os.remove(output_file_path)
走神的阿圆's avatar
走神的阿圆 已提交
206 207 208
    return results_pack


209 210 211 212 213 214 215 216 217
def create_app(init_flag=False, configs=None):
    if init_flag is False:
        if configs is None:
            raise RuntimeError("Lack of necessary configs.")
        global use_gpu, time_out
        time_out = 60
        use_gpu = configs.get("use_gpu", False)
        config_with_file(configs.get("modules_info", []))

走神的阿圆's avatar
走神的阿圆 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    app_instance = Flask(__name__)
    app_instance.config["JSON_AS_ASCII"] = False
    gunicorn_logger = logging.getLogger('gunicorn.error')
    app_instance.logger.handlers = gunicorn_logger.handlers
    app_instance.logger.setLevel(gunicorn_logger.level)

    @app_instance.route("/", methods=["GET", "POST"])
    def index():
        return render_template("main.html")

    @app_instance.before_request
    def before_request():
        request.data = {"id": utils.md5(request.remote_addr + str(time.time()))}

    @app_instance.route("/get/modules", methods=["GET", "POST"])
    def get_modules_info():
        global nlp_module, cv_module
        module_info = {}
        if len(nlp_module) > 0:
            module_info.update({"nlp_module": [{"Choose...": "Choose..."}]})
            for item in nlp_module:
                module_info["nlp_module"].append({item: item})
        if len(cv_module) > 0:
            module_info.update({"cv_module": [{"Choose...": "Choose..."}]})
            for item in cv_module:
                module_info["cv_module"].append({item: item})
        return {"module_info": module_info}

    @app_instance.route("/predict/image/<module_name>", methods=["POST"])
    def predict_image(module_name):
S
shenyuhan 已提交
248 249
        if request.path.split("/")[-1] not in cv_module:
            return {"error": "Module {} is not available.".format(module_name)}
走神的阿圆's avatar
走神的阿圆 已提交
250
        req_id = request.data.get("id")
251
        global use_gpu, batch_size_dict
走神的阿圆's avatar
走神的阿圆 已提交
252
        img_base64 = request.form.getlist("image")
S
shenyuhan 已提交
253 254 255
        extra_info = {}
        for item in list(request.form.keys()):
            extra_info.update({item: request.form.getlist(item)})
走神的阿圆's avatar
走神的阿圆 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        file_name_list = []
        if img_base64 != []:
            for item in img_base64:
                ext = item.split(";")[0].split("/")[-1]
                if ext not in ["jpeg", "jpg", "png"]:
                    return {"result": "Unrecognized file type"}
                filename = req_id + "_" \
                           + utils.md5(str(time.time())+item[0:20]) \
                           + "." \
                           + ext
                img_data = base64.b64decode(item.split(',')[-1])
                file_name_list.append(filename)
                with open(filename, "wb") as fp:
                    fp.write(img_data)
        else:
            file = request.files.getlist("image")
            for item in file:
                file_name = req_id + "_" + item.filename
                item.save(file_name)
                file_name_list.append(file_name)
S
shenyuhan 已提交
276
        module = default_module_manager.get_module(module_name)
走神的阿圆's avatar
走神的阿圆 已提交
277 278 279 280 281 282
        predict_func_name = cv_module_method.get(module_name, "")
        if predict_func_name != "":
            predict_func = eval(predict_func_name)
        else:
            module_type = module.type.split("/")[-1].replace("-", "_").lower()
            predict_func = eval("predict_" + module_type)
283
        batch_size = batch_size_dict.get(module_name, 1)
S
shenyuhan 已提交
284 285
        results = predict_func(module, file_name_list, req_id, batch_size,
                               extra_info)
走神的阿圆's avatar
走神的阿圆 已提交
286 287 288 289 290
        r = {"results": str(results)}
        return r

    @app_instance.route("/predict/text/<module_name>", methods=["POST"])
    def predict_text(module_name):
S
shenyuhan 已提交
291 292
        if request.path.split("/")[-1] not in nlp_module:
            return {"error": "Module {} is not available.".format(module_name)}
走神的阿圆's avatar
走神的阿圆 已提交
293
        req_id = request.data.get("id")
S
shenyuhan 已提交
294 295 296 297 298 299 300 301 302 303
        inputs = {}
        for item in list(request.form.keys()):
            inputs.update({item: request.form.getlist(item)})
        files = {}
        for file_key in list(request.files.keys()):
            files[file_key] = []
            for file in request.files.getlist(file_key):
                file_name = req_id + "_" + file.filename
                files[file_key].append(file_name)
                file.save(file_name)
S
shenyuhan 已提交
304
        module = default_module_manager.get_module(module_name)
S
shenyuhan 已提交
305 306 307 308 309 310 311
        results = predict_nlp(
            module=module,
            input_text=inputs,
            req_id=req_id,
            batch_size=batch_size_dict.get(module_name, 1),
            extra=files)
        return results
走神的阿圆's avatar
走神的阿圆 已提交
312 313 314 315 316

    return app_instance


def config_with_file(configs):
317
    global nlp_module, cv_module, batch_size_dict
走神的阿圆's avatar
走神的阿圆 已提交
318 319
    nlp_module = []
    cv_module = []
320
    batch_size_dict = {}
走神的阿圆's avatar
走神的阿圆 已提交
321 322 323 324 325 326
    for item in configs:
        print(item)
        if item["category"] == "CV":
            cv_module.append(item["module"])
        elif item["category"] == "NLP":
            nlp_module.append(item["module"])
327
        batch_size_dict.update({item["module"]: item["batch_size"]})
S
shenyuhan 已提交
328
        default_module_manager.load_module([item["module"]])
走神的阿圆's avatar
走神的阿圆 已提交
329 330 331 332 333 334 335 336 337 338 339


def run(is_use_gpu=False, configs=None, port=8866, timeout=60):
    global use_gpu, time_out
    time_out = timeout
    use_gpu = is_use_gpu
    if configs is not None:
        config_with_file(configs)
    else:
        print("Start failed cause of missing configuration.")
        return
340 341
    my_app = create_app(init_flag=True)
    my_app.run(host="0.0.0.0", port=port, debug=False, threaded=False)
走神的阿圆's avatar
走神的阿圆 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    print("PaddleHub-Serving has been stopped.")


if __name__ == "__main__":
    configs = [{
        'category': 'NLP',
        u'queue_size': 20,
        u'version': u'1.0.0',
        u'module': 'lac',
        u'batch_size': 20
    },
               {
                   'category': 'NLP',
                   u'queue_size': 20,
                   u'version': u'1.0.0',
                   u'module': 'senta_lstm',
                   u'batch_size': 20
               },
               {
                   'category': 'CV',
                   u'queue_size': 20,
                   u'version': u'1.0.0',
                   u'module': 'yolov3_coco2017',
                   u'batch_size': 20
               },
               {
                   'category': 'CV',
                   u'queue_size': 20,
                   u'version': u'1.0.0',
                   u'module': 'faster_rcnn_coco2017',
                   u'batch_size': 20
               }]
    run(is_use_gpu=False, configs=configs)