predict_predefine_net.py 4.2 KB
Newer Older
S
Steffy-zxf 已提交
1
#coding:utf-8
2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
K
kinghuin 已提交
15
"""Finetuning on classification task """
16

S
Steffy-zxf 已提交
17 18 19 20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
Zeyu Chen 已提交
21
import argparse
Z
Zeyu Chen 已提交
22
import ast
S
Steffy-zxf 已提交
23 24 25 26 27
import numpy as np
import os
import time
import paddle
import paddle.fluid as fluid
28 29 30 31
import paddlehub as hub

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
K
kinghuin 已提交
32
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
S
Steffy-zxf 已提交
33
parser.add_argument("--batch_size",     type=int,   default=1, help="Total examples' number in batch for training.")
34
parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.")
S
Steffy-zxf 已提交
35
parser.add_argument("--use_gpu", type=ast.literal_eval, default=False, help="Whether use GPU for finetuning, input should be True or False")
W
wuzewu 已提交
36
parser.add_argument("--use_data_parallel", type=ast.literal_eval, default=False, help="Whether use data parallel.")
S
Steffy-zxf 已提交
37
parser.add_argument("--network", type=str, default='bilstm', help="Pre-defined network which was connected after Transformer model, such as ERNIE, BERT ,RoBERTa and ELECTRA.")
38 39 40 41
args = parser.parse_args()
# yapf: enable.

if __name__ == '__main__':
K
kinghuin 已提交
42
    # Load Paddlehub ERNIE Tiny pretrained model
S
Steffy-zxf 已提交
43
    module = hub.Module(name="ernie_tiny")
Z
Zeyu Chen 已提交
44 45
    inputs, outputs, program = module.context(
        trainable=True, max_seq_len=args.max_seq_len)
46

K
kinghuin 已提交
47 48 49 50 51 52 53
    # Download dataset and use accuracy as metrics
    # Choose dataset: GLUE/XNLI/ChinesesGLUE/NLPCC-DBQA/LCQMC
    dataset = hub.dataset.ChnSentiCorp()

    # For ernie_tiny, it use sub-word to tokenize chinese sentence
    # If not ernie tiny, sp_model_path and word_dict_path should be set None
    reader = hub.reader.ClassifyReader(
Z
Zeyu Chen 已提交
54
        dataset=dataset,
55
        vocab_path=module.get_vocab_path(),
K
kinghuin 已提交
56 57 58
        max_seq_len=args.max_seq_len,
        sp_model_path=module.get_spm_path(),
        word_dict_path=module.get_word_dict_path())
59

60
    # Construct transfer learning network
K
kinghuin 已提交
61
    # Use "pooled_output" for classification tasks on an entire sentence.
W
wuzewu 已提交
62
    # Use "sequence_output" for token-level output.
S
Steffy-zxf 已提交
63
    token_feature = outputs["sequence_output"]
64

W
wuzewu 已提交
65
    # Setup feed list for data feeder
K
kinghuin 已提交
66
    # Must feed all the tensor of module need
W
wuzewu 已提交
67
    feed_list = [
K
kinghuin 已提交
68 69 70 71
        inputs["input_ids"].name,
        inputs["position_ids"].name,
        inputs["segment_ids"].name,
        inputs["input_mask"].name,
W
wuzewu 已提交
72
    ]
73

W
wuzewu 已提交
74 75
    # Setup runing config for PaddleHub Finetune API
    config = hub.RunConfig(
W
wuzewu 已提交
76
        use_data_parallel=args.use_data_parallel,
W
wuzewu 已提交
77 78 79
        use_cuda=args.use_gpu,
        batch_size=args.batch_size,
        checkpoint_dir=args.checkpoint_dir,
S
Steffy-zxf 已提交
80
        strategy=hub.AdamWeightDecayStrategy())
Z
Zeyu Chen 已提交
81

K
kinghuin 已提交
82
    # Define a classfication finetune task by PaddleHub's API
83
    # network choice: bilstm, bow, cnn, dpcnn, gru, lstm (PaddleHub pre-defined network)
S
Steffy-zxf 已提交
84
    # If you wanna add network after ERNIE/BERT/RoBERTa/ELECTRA module,
S
Steffy-zxf 已提交
85 86
    # you must use the outputs["sequence_output"] as the token_feature of TextClassifierTask,
    # rather than outputs["pooled_output"], and feature is None
K
kinghuin 已提交
87
    cls_task = hub.TextClassifierTask(
W
wuzewu 已提交
88
        data_reader=reader,
S
Steffy-zxf 已提交
89
        token_feature=token_feature,
W
wuzewu 已提交
90
        feed_list=feed_list,
S
Steffy-zxf 已提交
91
        network=args.network,
92
        num_classes=dataset.num_labels,
S
Steffy-zxf 已提交
93 94 95 96 97
        config=config)

    # Data to be prdicted
    data = [["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"], ["交通方便;环境很好;服务态度很好 房间较小"],
            ["19天硬盘就罢工了~~~算上运来的一周都没用上15天~~~可就是不能换了~~~唉~~~~你说这算什么事呀~~~"]]
98

S
Steffy-zxf 已提交
99
    print(cls_task.predict(data=data, return_result=True))