parser.add_argument("--max_seq_len",type=int,default=512,help="Number of words of the longest seqence.")
parser.add_argument("--use_gpu",type=ast.literal_eval,default=False,help="Whether use GPU for finetuning, input should be True or False")
parser.add_argument("--use_data_parallel",type=ast.literal_eval,default=False,help="Whether use data parallel.")
parser.add_argument("--network",type=str,default='bilstm',help="Preset network which was connected after Transformer model, such as ERNIE, BERT ,RoBERTa and ELECTRA.")
parser.add_argument("--network",type=str,default='bilstm',help="Pre-defined network which was connected after Transformer model, such as ERNIE, BERT ,RoBERTa and ELECTRA.")
args=parser.parse_args()
# yapf: enable.
if__name__=='__main__':
# Load Paddlehub ERNIE Tiny pretrained model
module=hub.Module(name="ernie_tiny")
module=hub.Module(name="ernie_v2_eng_base")
inputs,outputs,program=module.context(
trainable=True,max_seq_len=args.max_seq_len)
...
...
@@ -80,7 +80,7 @@ if __name__ == '__main__':
strategy=hub.AdamWeightDecayStrategy())
# Define a classfication finetune task by PaddleHub's API
parser.add_argument("--checkpoint_dir",type=str,default=None,help="Directory to model checkpoint")
parser.add_argument("--max_seq_len",type=int,default=512,help="Number of words of the longest seqence.")
parser.add_argument("--batch_size",type=int,default=32,help="Total examples' number in batch for training.")
parser.add_argument("--network",type=str,default='bilstm',help="Preset network which was connected after Transformer model, such as ERNIE, BERT ,RoBERTa and ELECTRA.")
parser.add_argument("--network",type=str,default='bilstm',help="Pre-defined network which was connected after Transformer model, such as ERNIE, BERT ,RoBERTa and ELECTRA.")
parser.add_argument("--use_data_parallel",type=ast.literal_eval,default=False,help="Whether use data parallel.")
args=parser.parse_args()
# yapf: enable.
...
...
@@ -36,7 +36,7 @@ args = parser.parse_args()
if__name__=='__main__':
# Load Paddlehub ERNIE Tiny pretrained model
module=hub.Module(name="ernie_tiny")
module=hub.Module(name="ernie_v2_eng_base")
inputs,outputs,program=module.context(
trainable=True,max_seq_len=args.max_seq_len)
...
...
@@ -85,7 +85,7 @@ if __name__ == '__main__':
strategy=strategy)
# Define a classfication finetune task by PaddleHub's API