#coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finetuning on classification task """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ast import numpy as np import os import time import paddle import paddle.fluid as fluid import paddlehub as hub # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--batch_size", type=int, default=1, help="Total examples' number in batch for training.") parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.") parser.add_argument("--use_gpu", type=ast.literal_eval, default=False, help="Whether use GPU for finetuning, input should be True or False") parser.add_argument("--use_data_parallel", type=ast.literal_eval, default=False, help="Whether use data parallel.") parser.add_argument("--network", type=str, default='bilstm', help="Pre-defined network which was connected after Transformer model, such as ERNIE, BERT ,RoBERTa and ELECTRA.") args = parser.parse_args() # yapf: enable. if __name__ == '__main__': # Load Paddlehub ERNIE Tiny pretrained model module = hub.Module(name="ernie_tiny") inputs, outputs, program = module.context( trainable=True, max_seq_len=args.max_seq_len) # Download dataset and use accuracy as metrics # Choose dataset: GLUE/XNLI/ChinesesGLUE/NLPCC-DBQA/LCQMC dataset = hub.dataset.ChnSentiCorp() # For ernie_tiny, it use sub-word to tokenize chinese sentence # If not ernie tiny, sp_model_path and word_dict_path should be set None reader = hub.reader.ClassifyReader( dataset=dataset, vocab_path=module.get_vocab_path(), max_seq_len=args.max_seq_len, sp_model_path=module.get_spm_path(), word_dict_path=module.get_word_dict_path()) # Construct transfer learning network # Use "pooled_output" for classification tasks on an entire sentence. # Use "sequence_output" for token-level output. token_feature = outputs["sequence_output"] # Setup feed list for data feeder # Must feed all the tensor of module need feed_list = [ inputs["input_ids"].name, inputs["position_ids"].name, inputs["segment_ids"].name, inputs["input_mask"].name, ] # Setup runing config for PaddleHub Finetune API config = hub.RunConfig( use_data_parallel=args.use_data_parallel, use_cuda=args.use_gpu, batch_size=args.batch_size, checkpoint_dir=args.checkpoint_dir, strategy=hub.AdamWeightDecayStrategy()) # Define a classfication finetune task by PaddleHub's API # network choice: bilstm, bow, cnn, dpcnn, gru, lstm (PaddleHub pre-defined network) # If you wanna add network after ERNIE/BERT/RoBERTa/ELECTRA module, # you must use the outputs["sequence_output"] as the token_feature of TextClassifierTask, # rather than outputs["pooled_output"], and feature is None cls_task = hub.TextClassifierTask( data_reader=reader, token_feature=token_feature, feed_list=feed_list, network=args.network, num_classes=dataset.num_labels, config=config) # Data to be prdicted data = [["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"], ["交通方便;环境很好;服务态度很好 房间较小"], ["19天硬盘就罢工了~~~算上运来的一周都没用上15天~~~可就是不能换了~~~唉~~~~你说这算什么事呀~~~"]] print(cls_task.predict(data=data, return_result=True))