nlp_reader.py 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import csv
Z
Zeyu Chen 已提交
20
import json
S
Steffy-zxf 已提交
21 22
import platform
import six
Z
Zeyu Chen 已提交
23
from collections import namedtuple
24

W
wuzewu 已提交
25
import paddle
26 27
import numpy as np

W
wuzewu 已提交
28
from paddlehub.reader import tokenization
29
from paddlehub.common.logger import logger
Z
Zeyu Chen 已提交
30
from .batching import pad_batch_data
W
wuzewu 已提交
31
import paddlehub as hub
32 33


S
Steffy-zxf 已提交
34 35 36 37 38 39
def get_encoding():
    if platform.platform().lower().startswith("windows"):
        return "gbk"
    return "utf8"


Z
Zeyu Chen 已提交
40
class BaseReader(object):
41 42 43
    def __init__(self,
                 dataset,
                 vocab_path,
Z
Zeyu Chen 已提交
44 45
                 label_map_config=None,
                 max_seq_len=512,
46 47 48 49 50 51
                 do_lower_case=True,
                 random_seed=None):
        self.max_seq_len = max_seq_len
        self.tokenizer = tokenization.FullTokenizer(
            vocab_file=vocab_path, do_lower_case=do_lower_case)
        self.vocab = self.tokenizer.vocab
Z
Zeyu Chen 已提交
52 53 54 55
        self.dataset = dataset
        self.pad_id = self.vocab["[PAD]"]
        self.cls_id = self.vocab["[CLS]"]
        self.sep_id = self.vocab["[SEP]"]
Z
Zeyu Chen 已提交
56
        self.in_tokens = False
57 58 59

        np.random.seed(random_seed)

Z
Zeyu Chen 已提交
60 61 62 63
        # generate label map
        self.label_map = {}
        for index, label in enumerate(self.dataset.get_labels()):
            self.label_map[label] = index
64
        logger.info("Dataset label map = {}".format(self.label_map))
Z
Zeyu Chen 已提交
65 66 67 68

        self.current_example = 0
        self.current_epoch = 0

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        self.num_examples = {'train': -1, 'dev': -1, 'test': -1}

    def get_train_examples(self):
        """Gets a collection of `InputExample`s for the train set."""
        return self.dataset.get_train_examples()

    def get_dev_examples(self):
        """Gets a collection of `InputExample`s for the dev set."""
        return self.dataset.get_dev_examples()

    def get_val_examples(self):
        """Gets a collection of `InputExample`s for the val set."""
        return self.dataset.get_val_examples()

    def get_test_examples(self):
        """Gets a collection of `InputExample`s for prediction."""
        return self.dataset.get_test_examples()

Z
Zeyu Chen 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    def get_train_progress(self):
        """Gets progress for training phase."""
        return self.current_example, self.current_epoch

    def _truncate_seq_pair(self, tokens_a, tokens_b, max_length):
        """Truncates a sequence pair in place to the maximum length."""

        # This is a simple heuristic which will always truncate the longer sequence
        # one token at a time. This makes more sense than truncating an equal percent
        # of tokens from each, since if one sequence is very short then each token
        # that's truncated likely contains more information than a longer sequence.
        while True:
            total_length = len(tokens_a) + len(tokens_b)
            if total_length <= max_length:
                break
            if len(tokens_a) > len(tokens_b):
                tokens_a.pop()
            else:
                tokens_b.pop()

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        """Converts a single `Example` into a single `Record`."""

        text_a = tokenization.convert_to_unicode(example.text_a)
        tokens_a = tokenizer.tokenize(text_a)
        tokens_b = None
        if example.text_b is not None:
            #if "text_b" in example._fields:
            text_b = tokenization.convert_to_unicode(example.text_b)
            tokens_b = tokenizer.tokenize(text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        # The convention in BERT/ERNIE is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0     0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambiguously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        text_type_ids = []
        tokens.append("[CLS]")
        text_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            text_type_ids.append(0)
        tokens.append("[SEP]")
        text_type_ids.append(0)
155

Z
Zeyu Chen 已提交
156 157 158 159 160 161 162 163 164 165 166
        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                text_type_ids.append(1)
            tokens.append("[SEP]")
            text_type_ids.append(1)

        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))

        if self.label_map:
167 168 169
            if example.label not in self.label_map:
                raise KeyError(
                    "example.label = {%s} not in label" % example.label)
Z
Zeyu Chen 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
            label_id = self.label_map[example.label]
        else:
            label_id = example.label

        Record = namedtuple(
            'Record',
            ['token_ids', 'text_type_ids', 'position_ids', 'label_id'])

        record = Record(
            token_ids=token_ids,
            text_type_ids=text_type_ids,
            position_ids=position_ids,
            label_id=label_id)
        return record

    def _prepare_batch_data(self, examples, batch_size, phase=None):
        """generate batch records"""
        batch_records, max_len = [], 0
        for index, example in enumerate(examples):
            if phase == "train":
                self.current_example = index
            record = self._convert_example_to_record(example, self.max_seq_len,
                                                     self.tokenizer)
            max_len = max(max_len, len(record.token_ids))
            if self.in_tokens:
                to_append = (len(batch_records) + 1) * max_len <= batch_size
            else:
                to_append = len(batch_records) < batch_size
            if to_append:
                batch_records.append(record)
            else:
                yield self._pad_batch_records(batch_records)
                batch_records, max_len = [record], len(record.token_ids)

        if batch_records:
            yield self._pad_batch_records(batch_records)

207 208 209 210 211 212 213 214
    def get_num_examples(self, phase):
        """Get number of examples for train, dev or test."""
        if phase not in ['train', 'val', 'dev', 'test']:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'val'/'dev', 'test']."
            )
        return self.num_examples[phase]

Z
Zeyu Chen 已提交
215
    def data_generator(self, batch_size=1, phase='train', shuffle=True):
Z
Zeyu Chen 已提交
216

217 218 219 220 221 222 223 224 225 226 227 228 229
        if phase == 'train':
            examples = self.get_train_examples()
            self.num_examples['train'] = len(examples)
        elif phase == 'val' or phase == 'dev':
            examples = self.get_dev_examples()
            self.num_examples['dev'] = len(examples)
        elif phase == 'test':
            examples = self.get_test_examples()
            self.num_examples['test'] = len(examples)
        else:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'dev', 'test'].")

Z
Zeyu Chen 已提交
230
        def wrapper():
231 232 233
            if shuffle:
                np.random.shuffle(examples)

Z
Zeyu Chen 已提交
234 235
            for batch_data in self._prepare_batch_data(
                    examples, batch_size, phase=phase):
236 237 238 239 240
                yield [batch_data]

        return wrapper


Z
Zeyu Chen 已提交
241 242 243 244 245 246 247
class ClassifyReader(BaseReader):
    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
        batch_labels = [record.label_id for record in batch_records]
        batch_labels = np.array(batch_labels).astype("int64").reshape([-1, 1])
248

Z
Zeyu Chen 已提交
249 250 251 252 253
        # if batch_records[0].qid:
        #     batch_qids = [record.qid for record in batch_records]
        #     batch_qids = np.array(batch_qids).astype("int64").reshape([-1, 1])
        # else:
        #     batch_qids = np.array([]).astype("int64").reshape([-1, 1])
254

Z
Zeyu Chen 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268
        # padding
        padded_token_ids, input_mask = pad_batch_data(
            batch_token_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id,
            return_input_mask=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
269

Z
Zeyu Chen 已提交
270 271 272 273
        return_list = [
            padded_token_ids, padded_position_ids, padded_text_type_ids,
            input_mask, batch_labels
        ]
274

Z
Zeyu Chen 已提交
275
        return return_list
276 277


Z
Zeyu Chen 已提交
278 279 280 281 282 283
class SequenceLabelReader(BaseReader):
    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
        batch_label_ids = [record.label_ids for record in batch_records]
284

Z
Zeyu Chen 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        # padding
        padded_token_ids, input_mask, batch_seq_lens = pad_batch_data(
            batch_token_ids,
            pad_idx=self.pad_id,
            max_seq_len=self.max_seq_len,
            return_input_mask=True,
            return_seq_lens=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
        padded_label_ids = pad_batch_data(
            batch_label_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=len(self.label_map) - 1)
304

Z
Zeyu Chen 已提交
305 306 307 308 309 310 311
        return_list = [
            padded_token_ids, padded_position_ids, padded_text_type_ids,
            input_mask, padded_label_ids, batch_seq_lens
        ]
        return return_list

    def _reseg_token_label(self, tokens, labels, tokenizer):
W
wuzewu 已提交
312 313
        if len(tokens) != len(labels):
            raise ValueError("The length of tokens must be same with labels")
Z
Zeyu Chen 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
        ret_tokens = []
        ret_labels = []
        for token, label in zip(tokens, labels):
            sub_token = tokenizer.tokenize(token)
            if len(sub_token) == 0:
                continue
            ret_tokens.extend(sub_token)
            ret_labels.append(label)
            if len(sub_token) < 2:
                continue
            sub_label = label
            if label.startswith("B-"):
                sub_label = "I-" + label[2:]
            ret_labels.extend([sub_label] * (len(sub_token) - 1))

W
wuzewu 已提交
329 330
        if len(ret_tokens) != len(labels):
            raise ValueError("The length of ret_tokens can't match with labels")
Z
Zeyu Chen 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        return ret_tokens, ret_labels

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        tokens = tokenization.convert_to_unicode(example.text_a).split(u"")
        labels = tokenization.convert_to_unicode(example.label).split(u"")
        tokens, labels = self._reseg_token_label(tokens, labels, tokenizer)

        if len(tokens) > max_seq_length - 2:
            tokens = tokens[0:(max_seq_length - 2)]
            labels = labels[0:(max_seq_length - 2)]

        tokens = ["[CLS]"] + tokens + ["[SEP]"]
        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))
        text_type_ids = [0] * len(token_ids)
        no_entity_id = len(self.label_map) - 1
        label_ids = [no_entity_id
                     ] + [self.label_map[label]
                          for label in labels] + [no_entity_id]

        Record = namedtuple(
            'Record',
            ['token_ids', 'text_type_ids', 'position_ids', 'label_ids'])
        record = Record(
            token_ids=token_ids,
            text_type_ids=text_type_ids,
            position_ids=position_ids,
            label_ids=label_ids)
        return record


Z
Zeyu Chen 已提交
362
class LACClassifyReader(object):
Z
Zeyu Chen 已提交
363
    def __init__(self, dataset, vocab_path):
W
wuzewu 已提交
364
        self.dataset = dataset
Z
Zeyu Chen 已提交
365
        self.lac = hub.Module(name="lac")
W
wuzewu 已提交
366
        self.tokenizer = tokenization.FullTokenizer(
Z
Zeyu Chen 已提交
367
            vocab_file=vocab_path, do_lower_case=False)
W
wuzewu 已提交
368 369 370 371 372
        self.vocab = self.tokenizer.vocab
        self.feed_key = list(
            self.lac.processor.data_format(
                sign_name="lexical_analysis").keys())[0]

Z
Zeyu Chen 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        self.num_examples = {'train': -1, 'dev': -1, 'test': -1}

    def get_num_examples(self, phase):
        """Get number of examples for train, dev or test."""
        if phase not in ['train', 'val', 'dev', 'test']:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'val'/'dev', 'test']."
            )
        return self.num_examples[phase]

    def get_train_examples(self):
        """Gets a collection of `InputExample`s for the train set."""
        return self.dataset.get_train_examples()

    def get_dev_examples(self):
        """Gets a collection of `InputExample`s for the dev set."""
        return self.dataset.get_dev_examples()

    def get_val_examples(self):
        """Gets a collection of `InputExample`s for the val set."""
        return self.dataset.get_val_examples()

    def get_test_examples(self):
        """Gets a collection of `InputExample`s for prediction."""
        return self.dataset.get_test_examples()

    def get_train_progress(self):
        """Gets progress for training phase."""
        return self.current_example, self.current_epoch

W
wuzewu 已提交
403 404 405 406 407 408
    def data_generator(self,
                       batch_size=1,
                       phase="train",
                       shuffle=False,
                       data=None):
        if phase == "train":
S
Steffy-zxf 已提交
409
            shuffle = True
W
wuzewu 已提交
410
            data = self.dataset.get_train_examples()
Z
Zeyu Chen 已提交
411
            self.num_examples['train'] = len(data)
W
wuzewu 已提交
412 413 414
        elif phase == "test":
            shuffle = False
            data = self.dataset.get_test_examples()
S
Steffy-zxf 已提交
415
            self.num_examples['test'] = len(data)
W
wuzewu 已提交
416 417 418
        elif phase == "val" or phase == "dev":
            shuffle = False
            data = self.dataset.get_dev_examples()
S
Steffy-zxf 已提交
419
            self.num_examples['dev'] = len(data)
W
wuzewu 已提交
420 421
        elif phase == "predict":
            data = data
Z
Zeyu Chen 已提交
422 423 424
        else:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'dev', 'test'].")
W
wuzewu 已提交
425 426 427 428

        def preprocess(text):
            data_dict = {self.feed_key: [text]}
            processed = self.lac.lexical_analysis(data=data_dict)
S
Steffy-zxf 已提交
429 430 431 432
            for data in processed:
                for index, word in enumerate(data['word']):
                    if six.PY2 and type(word) == str:
                        data['word'][index] = word.decode(get_encoding())
W
wuzewu 已提交
433 434 435 436
            processed = [
                self.vocab[word] for word in processed[0]['word']
                if word in self.vocab
            ]
S
Steffy-zxf 已提交
437 438 439 440
            if len(processed) == 0:
                logger.warning(
                    "The words in text %s can't be found in the vocabulary." %
                    (text))
W
wuzewu 已提交
441 442 443
            return processed

        def _data_reader():
S
Steffy-zxf 已提交
444 445 446
            if shuffle:
                np.random.shuffle(data)

W
wuzewu 已提交
447 448 449
            if phase == "predict":
                for text in data:
                    text = preprocess(text)
S
Steffy-zxf 已提交
450 451
                    if not text:
                        continue
W
wuzewu 已提交
452 453 454 455
                    yield (text, )
            else:
                for item in data:
                    text = preprocess(item.text_a)
S
Steffy-zxf 已提交
456 457
                    if not text:
                        continue
W
wuzewu 已提交
458 459 460 461 462
                    yield (text, item.label)

        return paddle.batch(_data_reader, batch_size=batch_size)


463 464
if __name__ == '__main__':
    pass