nlp_reader.py 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import csv
Z
Zeyu Chen 已提交
16
import json
17
import numpy as np
Z
Zeyu Chen 已提交
18
from collections import namedtuple
19

W
wuzewu 已提交
20
from paddlehub.reader import tokenization
21
from paddlehub.common.logger import logger
Z
Zeyu Chen 已提交
22
from .batching import pad_batch_data
23 24


Z
Zeyu Chen 已提交
25
class BaseReader(object):
26 27 28
    def __init__(self,
                 dataset,
                 vocab_path,
Z
Zeyu Chen 已提交
29 30
                 label_map_config=None,
                 max_seq_len=512,
31
                 do_lower_case=True,
Z
Zeyu Chen 已提交
32
                 in_tokens=False,
33 34 35 36 37
                 random_seed=None):
        self.max_seq_len = max_seq_len
        self.tokenizer = tokenization.FullTokenizer(
            vocab_file=vocab_path, do_lower_case=do_lower_case)
        self.vocab = self.tokenizer.vocab
Z
Zeyu Chen 已提交
38 39 40 41 42
        self.dataset = dataset
        self.pad_id = self.vocab["[PAD]"]
        self.cls_id = self.vocab["[CLS]"]
        self.sep_id = self.vocab["[SEP]"]
        self.in_tokens = in_tokens
43 44 45

        np.random.seed(random_seed)

Z
Zeyu Chen 已提交
46 47 48 49
        # generate label map
        self.label_map = {}
        for index, label in enumerate(self.dataset.get_labels()):
            self.label_map[label] = index
50
        logger.info("Dataset label map = {}".format(self.label_map))
Z
Zeyu Chen 已提交
51 52 53 54 55

        self.current_example = 0
        self.current_epoch = 0
        self.num_examples = 0

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
        self.num_examples = {'train': -1, 'dev': -1, 'test': -1}

    def get_train_examples(self):
        """Gets a collection of `InputExample`s for the train set."""
        return self.dataset.get_train_examples()

    def get_dev_examples(self):
        """Gets a collection of `InputExample`s for the dev set."""
        return self.dataset.get_dev_examples()

    def get_val_examples(self):
        """Gets a collection of `InputExample`s for the val set."""
        return self.dataset.get_val_examples()

    def get_test_examples(self):
        """Gets a collection of `InputExample`s for prediction."""
        return self.dataset.get_test_examples()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        return self.dataset.get_labels()

Z
Zeyu Chen 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    def get_train_progress(self):
        """Gets progress for training phase."""
        return self.current_example, self.current_epoch

    def _truncate_seq_pair(self, tokens_a, tokens_b, max_length):
        """Truncates a sequence pair in place to the maximum length."""

        # This is a simple heuristic which will always truncate the longer sequence
        # one token at a time. This makes more sense than truncating an equal percent
        # of tokens from each, since if one sequence is very short then each token
        # that's truncated likely contains more information than a longer sequence.
        while True:
            total_length = len(tokens_a) + len(tokens_b)
            if total_length <= max_length:
                break
            if len(tokens_a) > len(tokens_b):
                tokens_a.pop()
            else:
                tokens_b.pop()

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        """Converts a single `Example` into a single `Record`."""

        text_a = tokenization.convert_to_unicode(example.text_a)
        tokens_a = tokenizer.tokenize(text_a)
        tokens_b = None
        if example.text_b is not None:
            #if "text_b" in example._fields:
            text_b = tokenization.convert_to_unicode(example.text_b)
            tokens_b = tokenizer.tokenize(text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        # The convention in BERT/ERNIE is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0     0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambiguously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        text_type_ids = []
        tokens.append("[CLS]")
        text_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            text_type_ids.append(0)
        tokens.append("[SEP]")
        text_type_ids.append(0)
146

Z
Zeyu Chen 已提交
147 148 149 150 151 152 153 154 155 156 157
        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                text_type_ids.append(1)
            tokens.append("[SEP]")
            text_type_ids.append(1)

        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))

        if self.label_map:
158 159 160
            if example.label not in self.label_map:
                raise KeyError(
                    "example.label = {%s} not in label" % example.label)
Z
Zeyu Chen 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
            label_id = self.label_map[example.label]
        else:
            label_id = example.label

        Record = namedtuple(
            'Record',
            ['token_ids', 'text_type_ids', 'position_ids', 'label_id'])

        record = Record(
            token_ids=token_ids,
            text_type_ids=text_type_ids,
            position_ids=position_ids,
            label_id=label_id)
        return record

    def _prepare_batch_data(self, examples, batch_size, phase=None):
        """generate batch records"""
        batch_records, max_len = [], 0
        for index, example in enumerate(examples):
            if phase == "train":
                self.current_example = index
            record = self._convert_example_to_record(example, self.max_seq_len,
                                                     self.tokenizer)
            max_len = max(max_len, len(record.token_ids))
            if self.in_tokens:
                to_append = (len(batch_records) + 1) * max_len <= batch_size
            else:
                to_append = len(batch_records) < batch_size
            if to_append:
                batch_records.append(record)
            else:
                yield self._pad_batch_records(batch_records)
                batch_records, max_len = [record], len(record.token_ids)

        if batch_records:
            yield self._pad_batch_records(batch_records)

198 199 200 201 202 203 204 205 206
    def get_num_examples(self, phase):
        """Get number of examples for train, dev or test."""
        if phase not in ['train', 'val', 'dev', 'test']:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'val'/'dev', 'test']."
            )
        return self.num_examples[phase]

    def data_generator(self, batch_size, phase='train', shuffle=True):
Z
Zeyu Chen 已提交
207

208 209 210 211 212 213 214 215 216 217 218 219 220
        if phase == 'train':
            examples = self.get_train_examples()
            self.num_examples['train'] = len(examples)
        elif phase == 'val' or phase == 'dev':
            examples = self.get_dev_examples()
            self.num_examples['dev'] = len(examples)
        elif phase == 'test':
            examples = self.get_test_examples()
            self.num_examples['test'] = len(examples)
        else:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'dev', 'test'].")

Z
Zeyu Chen 已提交
221
        def wrapper():
222 223 224
            if shuffle:
                np.random.shuffle(examples)

Z
Zeyu Chen 已提交
225 226
            for batch_data in self._prepare_batch_data(
                    examples, batch_size, phase=phase):
227 228 229 230 231
                yield [batch_data]

        return wrapper


Z
Zeyu Chen 已提交
232 233 234 235 236 237 238
class ClassifyReader(BaseReader):
    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
        batch_labels = [record.label_id for record in batch_records]
        batch_labels = np.array(batch_labels).astype("int64").reshape([-1, 1])
239

Z
Zeyu Chen 已提交
240 241 242 243 244
        # if batch_records[0].qid:
        #     batch_qids = [record.qid for record in batch_records]
        #     batch_qids = np.array(batch_qids).astype("int64").reshape([-1, 1])
        # else:
        #     batch_qids = np.array([]).astype("int64").reshape([-1, 1])
245

Z
Zeyu Chen 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259
        # padding
        padded_token_ids, input_mask = pad_batch_data(
            batch_token_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id,
            return_input_mask=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
260

Z
Zeyu Chen 已提交
261 262 263 264
        return_list = [
            padded_token_ids, padded_position_ids, padded_text_type_ids,
            input_mask, batch_labels
        ]
265

Z
Zeyu Chen 已提交
266
        return return_list
267 268


Z
Zeyu Chen 已提交
269 270 271 272 273 274
class SequenceLabelReader(BaseReader):
    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
        batch_label_ids = [record.label_ids for record in batch_records]
275

Z
Zeyu Chen 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        # padding
        padded_token_ids, input_mask, batch_seq_lens = pad_batch_data(
            batch_token_ids,
            pad_idx=self.pad_id,
            max_seq_len=self.max_seq_len,
            return_input_mask=True,
            return_seq_lens=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
        padded_label_ids = pad_batch_data(
            batch_label_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=len(self.label_map) - 1)
295

Z
Zeyu Chen 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        return_list = [
            padded_token_ids, padded_position_ids, padded_text_type_ids,
            input_mask, padded_label_ids, batch_seq_lens
        ]
        return return_list

    def _reseg_token_label(self, tokens, labels, tokenizer):
        assert len(tokens) == len(labels)
        ret_tokens = []
        ret_labels = []
        for token, label in zip(tokens, labels):
            sub_token = tokenizer.tokenize(token)
            if len(sub_token) == 0:
                continue
            ret_tokens.extend(sub_token)
            ret_labels.append(label)
            if len(sub_token) < 2:
                continue
            sub_label = label
            if label.startswith("B-"):
                sub_label = "I-" + label[2:]
            ret_labels.extend([sub_label] * (len(sub_token) - 1))

        assert len(ret_tokens) == len(ret_labels)
        return ret_tokens, ret_labels

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        tokens = tokenization.convert_to_unicode(example.text_a).split(u"")
        labels = tokenization.convert_to_unicode(example.label).split(u"")
        tokens, labels = self._reseg_token_label(tokens, labels, tokenizer)

        if len(tokens) > max_seq_length - 2:
            tokens = tokens[0:(max_seq_length - 2)]
            labels = labels[0:(max_seq_length - 2)]

        tokens = ["[CLS]"] + tokens + ["[SEP]"]
        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))
        text_type_ids = [0] * len(token_ids)
        no_entity_id = len(self.label_map) - 1
        label_ids = [no_entity_id
                     ] + [self.label_map[label]
                          for label in labels] + [no_entity_id]

        Record = namedtuple(
            'Record',
            ['token_ids', 'text_type_ids', 'position_ids', 'label_ids'])
        record = Record(
            token_ids=token_ids,
            text_type_ids=text_type_ids,
            position_ids=position_ids,
            label_ids=label_ids)
        return record


class ExtractEmbeddingReader(BaseReader):
    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]

        # padding
        padded_token_ids, input_mask, seq_lens = pad_batch_data(
            batch_token_ids,
            pad_idx=self.pad_id,
            max_seq_len=self.max_seq_len,
            return_input_mask=True,
            return_seq_lens=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids,
            pad_idx=self.pad_id,
            max_seq_len=self.max_seq_len)
        padded_position_ids = pad_batch_data(
            batch_position_ids,
            pad_idx=self.pad_id,
            max_seq_len=self.max_seq_len)

        return_list = [
            padded_token_ids, padded_text_type_ids, padded_position_ids,
            input_mask, seq_lens
        ]
377

Z
Zeyu Chen 已提交
378
        return return_list
379 380 381 382


if __name__ == '__main__':
    pass