nlp_reader.py 17.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import csv
Z
Zeyu Chen 已提交
20 21
import json
from collections import namedtuple
22

W
wuzewu 已提交
23
import paddle
24 25
import numpy as np

W
wuzewu 已提交
26
from paddlehub.reader import tokenization
27
from paddlehub.common.logger import logger
Z
Zeyu Chen 已提交
28
from .batching import pad_batch_data
W
wuzewu 已提交
29
import paddlehub as hub
30 31


Z
Zeyu Chen 已提交
32
class BaseReader(object):
33 34 35
    def __init__(self,
                 dataset,
                 vocab_path,
Z
Zeyu Chen 已提交
36 37
                 label_map_config=None,
                 max_seq_len=512,
38
                 do_lower_case=True,
Z
Zeyu Chen 已提交
39
                 in_tokens=False,
40 41 42 43 44
                 random_seed=None):
        self.max_seq_len = max_seq_len
        self.tokenizer = tokenization.FullTokenizer(
            vocab_file=vocab_path, do_lower_case=do_lower_case)
        self.vocab = self.tokenizer.vocab
Z
Zeyu Chen 已提交
45 46 47 48 49
        self.dataset = dataset
        self.pad_id = self.vocab["[PAD]"]
        self.cls_id = self.vocab["[CLS]"]
        self.sep_id = self.vocab["[SEP]"]
        self.in_tokens = in_tokens
50 51 52

        np.random.seed(random_seed)

Z
Zeyu Chen 已提交
53 54 55 56
        # generate label map
        self.label_map = {}
        for index, label in enumerate(self.dataset.get_labels()):
            self.label_map[label] = index
57
        logger.info("Dataset label map = {}".format(self.label_map))
Z
Zeyu Chen 已提交
58 59 60 61

        self.current_example = 0
        self.current_epoch = 0

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
        self.num_examples = {'train': -1, 'dev': -1, 'test': -1}

    def get_train_examples(self):
        """Gets a collection of `InputExample`s for the train set."""
        return self.dataset.get_train_examples()

    def get_dev_examples(self):
        """Gets a collection of `InputExample`s for the dev set."""
        return self.dataset.get_dev_examples()

    def get_val_examples(self):
        """Gets a collection of `InputExample`s for the val set."""
        return self.dataset.get_val_examples()

    def get_test_examples(self):
        """Gets a collection of `InputExample`s for prediction."""
        return self.dataset.get_test_examples()

Z
Zeyu Chen 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    def get_train_progress(self):
        """Gets progress for training phase."""
        return self.current_example, self.current_epoch

    def _truncate_seq_pair(self, tokens_a, tokens_b, max_length):
        """Truncates a sequence pair in place to the maximum length."""

        # This is a simple heuristic which will always truncate the longer sequence
        # one token at a time. This makes more sense than truncating an equal percent
        # of tokens from each, since if one sequence is very short then each token
        # that's truncated likely contains more information than a longer sequence.
        while True:
            total_length = len(tokens_a) + len(tokens_b)
            if total_length <= max_length:
                break
            if len(tokens_a) > len(tokens_b):
                tokens_a.pop()
            else:
                tokens_b.pop()

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        """Converts a single `Example` into a single `Record`."""

        text_a = tokenization.convert_to_unicode(example.text_a)
        tokens_a = tokenizer.tokenize(text_a)
        tokens_b = None
        if example.text_b is not None:
            #if "text_b" in example._fields:
            text_b = tokenization.convert_to_unicode(example.text_b)
            tokens_b = tokenizer.tokenize(text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        # The convention in BERT/ERNIE is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0     0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambiguously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        text_type_ids = []
        tokens.append("[CLS]")
        text_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            text_type_ids.append(0)
        tokens.append("[SEP]")
        text_type_ids.append(0)
148

Z
Zeyu Chen 已提交
149 150 151 152 153 154 155 156 157 158 159
        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                text_type_ids.append(1)
            tokens.append("[SEP]")
            text_type_ids.append(1)

        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))

        if self.label_map:
160 161 162
            if example.label not in self.label_map:
                raise KeyError(
                    "example.label = {%s} not in label" % example.label)
Z
Zeyu Chen 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            label_id = self.label_map[example.label]
        else:
            label_id = example.label

        Record = namedtuple(
            'Record',
            ['token_ids', 'text_type_ids', 'position_ids', 'label_id'])

        record = Record(
            token_ids=token_ids,
            text_type_ids=text_type_ids,
            position_ids=position_ids,
            label_id=label_id)
        return record

    def _prepare_batch_data(self, examples, batch_size, phase=None):
        """generate batch records"""
        batch_records, max_len = [], 0
        for index, example in enumerate(examples):
            if phase == "train":
                self.current_example = index
            record = self._convert_example_to_record(example, self.max_seq_len,
                                                     self.tokenizer)
            max_len = max(max_len, len(record.token_ids))
            if self.in_tokens:
                to_append = (len(batch_records) + 1) * max_len <= batch_size
            else:
                to_append = len(batch_records) < batch_size
            if to_append:
                batch_records.append(record)
            else:
                yield self._pad_batch_records(batch_records)
                batch_records, max_len = [record], len(record.token_ids)

        if batch_records:
            yield self._pad_batch_records(batch_records)

200 201 202 203 204 205 206 207
    def get_num_examples(self, phase):
        """Get number of examples for train, dev or test."""
        if phase not in ['train', 'val', 'dev', 'test']:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'val'/'dev', 'test']."
            )
        return self.num_examples[phase]

Z
Zeyu Chen 已提交
208
    def data_generator(self, batch_size=1, phase='train', shuffle=True):
Z
Zeyu Chen 已提交
209

210 211 212 213 214 215 216 217 218 219 220 221 222
        if phase == 'train':
            examples = self.get_train_examples()
            self.num_examples['train'] = len(examples)
        elif phase == 'val' or phase == 'dev':
            examples = self.get_dev_examples()
            self.num_examples['dev'] = len(examples)
        elif phase == 'test':
            examples = self.get_test_examples()
            self.num_examples['test'] = len(examples)
        else:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'dev', 'test'].")

Z
Zeyu Chen 已提交
223
        def wrapper():
224 225 226
            if shuffle:
                np.random.shuffle(examples)

Z
Zeyu Chen 已提交
227 228
            for batch_data in self._prepare_batch_data(
                    examples, batch_size, phase=phase):
229 230 231 232 233
                yield [batch_data]

        return wrapper


Z
Zeyu Chen 已提交
234 235 236 237 238 239 240
class ClassifyReader(BaseReader):
    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
        batch_labels = [record.label_id for record in batch_records]
        batch_labels = np.array(batch_labels).astype("int64").reshape([-1, 1])
241

Z
Zeyu Chen 已提交
242 243 244 245 246
        # if batch_records[0].qid:
        #     batch_qids = [record.qid for record in batch_records]
        #     batch_qids = np.array(batch_qids).astype("int64").reshape([-1, 1])
        # else:
        #     batch_qids = np.array([]).astype("int64").reshape([-1, 1])
247

Z
Zeyu Chen 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261
        # padding
        padded_token_ids, input_mask = pad_batch_data(
            batch_token_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id,
            return_input_mask=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
262

Z
Zeyu Chen 已提交
263 264 265 266
        return_list = [
            padded_token_ids, padded_position_ids, padded_text_type_ids,
            input_mask, batch_labels
        ]
267

Z
Zeyu Chen 已提交
268
        return return_list
269 270


Z
Zeyu Chen 已提交
271 272 273 274 275 276
class SequenceLabelReader(BaseReader):
    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
        batch_label_ids = [record.label_ids for record in batch_records]
277

Z
Zeyu Chen 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        # padding
        padded_token_ids, input_mask, batch_seq_lens = pad_batch_data(
            batch_token_ids,
            pad_idx=self.pad_id,
            max_seq_len=self.max_seq_len,
            return_input_mask=True,
            return_seq_lens=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
        padded_label_ids = pad_batch_data(
            batch_label_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=len(self.label_map) - 1)
297

Z
Zeyu Chen 已提交
298 299 300 301 302 303 304
        return_list = [
            padded_token_ids, padded_position_ids, padded_text_type_ids,
            input_mask, padded_label_ids, batch_seq_lens
        ]
        return return_list

    def _reseg_token_label(self, tokens, labels, tokenizer):
W
wuzewu 已提交
305 306
        if len(tokens) != len(labels):
            raise ValueError("The length of tokens must be same with labels")
Z
Zeyu Chen 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
        ret_tokens = []
        ret_labels = []
        for token, label in zip(tokens, labels):
            sub_token = tokenizer.tokenize(token)
            if len(sub_token) == 0:
                continue
            ret_tokens.extend(sub_token)
            ret_labels.append(label)
            if len(sub_token) < 2:
                continue
            sub_label = label
            if label.startswith("B-"):
                sub_label = "I-" + label[2:]
            ret_labels.extend([sub_label] * (len(sub_token) - 1))

W
wuzewu 已提交
322 323
        if len(ret_tokens) != len(labels):
            raise ValueError("The length of ret_tokens can't match with labels")
Z
Zeyu Chen 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
        return ret_tokens, ret_labels

    def _convert_example_to_record(self, example, max_seq_length, tokenizer):
        tokens = tokenization.convert_to_unicode(example.text_a).split(u"")
        labels = tokenization.convert_to_unicode(example.label).split(u"")
        tokens, labels = self._reseg_token_label(tokens, labels, tokenizer)

        if len(tokens) > max_seq_length - 2:
            tokens = tokens[0:(max_seq_length - 2)]
            labels = labels[0:(max_seq_length - 2)]

        tokens = ["[CLS]"] + tokens + ["[SEP]"]
        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))
        text_type_ids = [0] * len(token_ids)
        no_entity_id = len(self.label_map) - 1
        label_ids = [no_entity_id
                     ] + [self.label_map[label]
                          for label in labels] + [no_entity_id]

        Record = namedtuple(
            'Record',
            ['token_ids', 'text_type_ids', 'position_ids', 'label_ids'])
        record = Record(
            token_ids=token_ids,
            text_type_ids=text_type_ids,
            position_ids=position_ids,
            label_ids=label_ids)
        return record


class ExtractEmbeddingReader(BaseReader):
    def _pad_batch_records(self, batch_records):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]

        # padding
        padded_token_ids, input_mask, seq_lens = pad_batch_data(
            batch_token_ids,
            pad_idx=self.pad_id,
            max_seq_len=self.max_seq_len,
            return_input_mask=True,
            return_seq_lens=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids,
            pad_idx=self.pad_id,
            max_seq_len=self.max_seq_len)
        padded_position_ids = pad_batch_data(
            batch_position_ids,
            pad_idx=self.pad_id,
            max_seq_len=self.max_seq_len)

        return_list = [
            padded_token_ids, padded_text_type_ids, padded_position_ids,
            input_mask, seq_lens
        ]
381

Z
Zeyu Chen 已提交
382
        return return_list
383 384


Z
Zeyu Chen 已提交
385 386
class LACTokenizeReader(object):
    def __init__(self, dataset, vocab_path):
W
wuzewu 已提交
387
        self.dataset = dataset
Z
Zeyu Chen 已提交
388
        self.lac = hub.Module(name="lac")
W
wuzewu 已提交
389
        self.tokenizer = tokenization.FullTokenizer(
Z
Zeyu Chen 已提交
390
            vocab_file=vocab_path, do_lower_case=False)
W
wuzewu 已提交
391 392 393 394 395
        self.vocab = self.tokenizer.vocab
        self.feed_key = list(
            self.lac.processor.data_format(
                sign_name="lexical_analysis").keys())[0]

Z
Zeyu Chen 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
        self.num_examples = {'train': -1, 'dev': -1, 'test': -1}

    def get_num_examples(self, phase):
        """Get number of examples for train, dev or test."""
        if phase not in ['train', 'val', 'dev', 'test']:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'val'/'dev', 'test']."
            )
        return self.num_examples[phase]

    def get_train_examples(self):
        """Gets a collection of `InputExample`s for the train set."""
        return self.dataset.get_train_examples()

    def get_dev_examples(self):
        """Gets a collection of `InputExample`s for the dev set."""
        return self.dataset.get_dev_examples()

    def get_val_examples(self):
        """Gets a collection of `InputExample`s for the val set."""
        return self.dataset.get_val_examples()

    def get_test_examples(self):
        """Gets a collection of `InputExample`s for prediction."""
        return self.dataset.get_test_examples()

    def get_train_progress(self):
        """Gets progress for training phase."""
        return self.current_example, self.current_epoch

W
wuzewu 已提交
426 427 428 429 430 431 432
    def data_generator(self,
                       batch_size=1,
                       phase="train",
                       shuffle=False,
                       data=None):
        if phase == "train":
            data = self.dataset.get_train_examples()
Z
Zeyu Chen 已提交
433
            self.num_examples['train'] = len(data)
W
wuzewu 已提交
434 435 436
        elif phase == "test":
            shuffle = False
            data = self.dataset.get_test_examples()
Z
Zeyu Chen 已提交
437
            self.num_examples['train'] = len(data)
W
wuzewu 已提交
438 439 440
        elif phase == "val" or phase == "dev":
            shuffle = False
            data = self.dataset.get_dev_examples()
Z
Zeyu Chen 已提交
441
            self.num_examples['test'] = len(data)
W
wuzewu 已提交
442 443
        elif phase == "predict":
            data = data
Z
Zeyu Chen 已提交
444 445 446
        else:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'dev', 'test'].")
W
wuzewu 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

        def preprocess(text):
            data_dict = {self.feed_key: [text]}
            processed = self.lac.lexical_analysis(data=data_dict)
            processed = [
                self.vocab[word] for word in processed[0]['word']
                if word in self.vocab
            ]
            return processed

        def _data_reader():
            if phase == "predict":
                for text in data:
                    text = preprocess(text)
                    yield (text, )
            else:
                for item in data:
                    text = preprocess(item.text_a)
                    yield (text, item.label)

        return paddle.batch(_data_reader, batch_size=batch_size)


470 471
if __name__ == '__main__':
    pass