cv_module.py 14.5 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# coding:utf-8
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
haoyuying 已提交
16 17
import time
import os
18
from typing import List
H
haoyuying 已提交
19
from collections import OrderedDict
20

H
haoyuying 已提交
21
import cv2
W
wuzewu 已提交
22
import paddle
23
import numpy as np
H
haoyuying 已提交
24
import paddle.nn as nn
25
import paddle.nn.functional as F
H
haoyuying 已提交
26
from PIL import Image
W
wuzewu 已提交
27

28 29 30
import paddlehub.vision.transforms as T
import paddlehub.vision.functional as Func
from paddlehub.vision import utils
W
wuzewu 已提交
31 32 33 34 35 36
from paddlehub.module.module import serving, RunModule
from paddlehub.utils.utils import base64_to_cv2


class ImageServing(object):
    @serving
37
    def serving_method(self, images: List[str], **kwargs) -> List[dict]:
W
wuzewu 已提交
38 39 40 41 42 43 44
        """Run as a service."""
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.predict(images=images_decode, **kwargs)
        return results


class ImageClassifierModule(RunModule, ImageServing):
45 46 47 48 49
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
W
wuzewu 已提交
50 51
            batch(list[paddle.Tensor]) : The one batch data, which contains images and labels.
            batch_idx(int) : The index of batch.
52 53 54 55

        Returns:
            results(dict) : The model outputs, such as loss and metrics.
        '''
W
wuzewu 已提交
56 57
        return self.validation_step(batch, batch_idx)

58 59 60 61 62
    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
W
wuzewu 已提交
63 64
            batch(list[paddle.Tensor]) : The one batch data, which contains images and labels.
            batch_idx(int) : The index of batch.
65 66 67 68

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
W
wuzewu 已提交
69
        images = batch[0]
70
        labels = paddle.unsqueeze(batch[1], axis=-1)
W
wuzewu 已提交
71 72

        preds = self(images)
73 74 75
        loss, _ = F.softmax_with_cross_entropy(preds, labels, return_softmax=True, axis=1)
        loss = paddle.mean(loss)
        acc = paddle.metric.accuracy(preds, labels)
W
wuzewu 已提交
76 77
        return {'loss': loss, 'metrics': {'acc': acc}}

78 79 80 81 82 83 84 85 86 87 88
    def predict(self, images: List[np.ndarray], top_k: int = 1) -> List[dict]:
        '''
        Predict images

        Args:
            images(list[numpy.ndarray]) : Images to be predicted, consist of np.ndarray in bgr format.
            top_k(int) : Output top k result of each image.

        Returns:
            results(list[dict]) : The prediction result of each input image
        '''
W
wuzewu 已提交
89 90 91
        images = self.transforms(images)
        if len(images.shape) == 3:
            images = images[np.newaxis, :]
W
wuzewu 已提交
92
        preds = self(paddle.to_tensor(images))
93
        preds = F.softmax(preds, axis=1).numpy()
W
wuzewu 已提交
94 95 96 97 98 99 100 101 102
        pred_idxs = np.argsort(preds)[::-1][:, :top_k]
        res = []
        for i, pred in enumerate(pred_idxs):
            res_dict = {}
            for k in pred:
                class_name = self.labels[int(k)]
                res_dict[class_name] = preds[i][k]
            res.append(res_dict)
        return res
H
haoyuying 已提交
103 104 105 106 107 108


class ImageColorizeModule(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.
H
haoyuying 已提交
109

H
haoyuying 已提交
110 111 112
        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.
H
haoyuying 已提交
113

H
haoyuying 已提交
114
        Returns:
H
haoyuying 已提交
115
            results(dict): The model outputs, such as loss and metrics.
H
haoyuying 已提交
116 117 118 119 120 121
        '''
        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.
H
haoyuying 已提交
122

H
haoyuying 已提交
123 124 125
        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.
H
haoyuying 已提交
126

H
haoyuying 已提交
127 128 129
        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
H
haoyuying 已提交
130 131
        img = self.preprocess(batch[0])
        out_class, out_reg = self(img['A'], img['hint_B'], img['mask_B'])
H
haoyuying 已提交
132

H
haoyuying 已提交
133
        # loss
H
haoyuying 已提交
134
        criterionCE = nn.loss.CrossEntropyLoss()
H
haoyuying 已提交
135 136
        loss_ce = criterionCE(out_class, img['real_B_enc'][:, 0, :, :])
        loss_G_L1_reg = paddle.sum(paddle.abs(img['B'] - out_reg), axis=1, keepdim=True)
H
haoyuying 已提交
137 138
        loss_G_L1_reg = paddle.mean(loss_G_L1_reg)
        loss = loss_ce + loss_G_L1_reg
H
haoyuying 已提交
139

H
haoyuying 已提交
140
        return {'loss': loss}
H
haoyuying 已提交
141 142 143 144

    def predict(self, images: str, visualization: bool = True, save_path: str = 'result'):
        '''
        Colorize images
H
haoyuying 已提交
145

H
haoyuying 已提交
146
        Args:
H
haoyuying 已提交
147
            images(str|np.ndarray) : Images path or BGR image to be colorized.
H
haoyuying 已提交
148 149
            visualization(bool): Whether to save colorized images.
            save_path(str) : Path to save colorized images.
H
haoyuying 已提交
150

H
haoyuying 已提交
151 152 153
        Returns:
            results(list[dict]) : The prediction result of each input image
        '''
154
        self.eval()
H
haoyuying 已提交
155
        lab2rgb = T.LAB2RGB()
W
wuzewu 已提交
156

H
haoyuying 已提交
157 158
        if isinstance(images, str):
            images = cv2.imread(images).astype('float32')
H
haoyuying 已提交
159

H
haoyuying 已提交
160
        im = self.transforms(images)
H
haoyuying 已提交
161 162 163
        im = im[np.newaxis, :, :, :]
        im = self.preprocess(im)
        out_class, out_reg = self(im['A'], im['hint_B'], im['mask_B'])
H
haoyuying 已提交
164

H
haoyuying 已提交
165 166
        result = []
        visual_ret = OrderedDict()
H
haoyuying 已提交
167
        for i in range(im['A'].shape[0]):
H
haoyuying 已提交
168
            gray = lab2rgb(np.concatenate((im['A'].numpy(), np.zeros(im['B'].shape)), axis=1))[i]
H
haoyuying 已提交
169 170
            gray = np.clip(np.transpose(gray, (1, 2, 0)), 0, 1) * 255
            visual_ret['gray'] = gray.astype(np.uint8)
H
haoyuying 已提交
171
            hint = lab2rgb(np.concatenate((im['A'].numpy(), im['hint_B'].numpy()), axis=1))[i]
H
haoyuying 已提交
172 173
            hint = np.clip(np.transpose(hint, (1, 2, 0)), 0, 1) * 255
            visual_ret['hint'] = hint.astype(np.uint8)
H
haoyuying 已提交
174
            real = lab2rgb(np.concatenate((im['A'].numpy(), im['B'].numpy()), axis=1))[i]
H
haoyuying 已提交
175 176
            real = np.clip(np.transpose(real, (1, 2, 0)), 0, 1) * 255
            visual_ret['real'] = real.astype(np.uint8)
H
haoyuying 已提交
177
            fake = lab2rgb(np.concatenate((im['A'].numpy(), out_reg.numpy()), axis=1))[i]
H
haoyuying 已提交
178 179
            fake = np.clip(np.transpose(fake, (1, 2, 0)), 0, 1) * 255
            visual_ret['fake_reg'] = fake.astype(np.uint8)
H
haoyuying 已提交
180

H
haoyuying 已提交
181
            if visualization:
H
haoyuying 已提交
182
                h, w, c = images.shape
H
haoyuying 已提交
183 184 185 186 187
                fake_name = "fake_" + str(time.time()) + ".png"
                if not os.path.exists(save_path):
                    os.mkdir(save_path)
                fake_path = os.path.join(save_path, fake_name)
                visual_gray = Image.fromarray(visual_ret['fake_reg'])
H
haoyuying 已提交
188
                visual_gray = visual_gray.resize((w, h), Image.BILINEAR)
H
haoyuying 已提交
189
                visual_gray.save(fake_path)
H
haoyuying 已提交
190

H
haoyuying 已提交
191 192
            result.append(visual_ret)
        return result
H
haoyuying 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221


class Yolov3Module(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images, ground truth boxes, labels and scores.
            batch_idx(int): The index of batch.

        Returns:
            results(dict): The model outputs, such as loss.
        '''

        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images, ground truth boxes, labels and scores.
            batch_idx(int): The index of batch.

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
        img = batch[0].astype('float32')
222 223 224 225 226 227 228 229 230
        gtbox = batch[1].astype('float32')
        gtlabel = batch[2].astype('int32')
        gtscore = batch[3].astype("float32")
        losses = []
        outputs = self(img)
        self.downsample = 32

        for i, out in enumerate(outputs):
            anchor_mask = self.anchor_masks[i]
231 232 233 234 235 236 237 238 239 240 241
            loss = F.yolov3_loss(
                x=out,
                gt_box=gtbox,
                gt_label=gtlabel,
                gt_score=gtscore,
                anchors=self.anchors,
                anchor_mask=anchor_mask,
                class_num=self.class_num,
                ignore_thresh=self.ignore_thresh,
                downsample_ratio=32,
                use_label_smooth=False)
W
wuzewu 已提交
242
            losses.append(paddle.mean(loss))
243 244 245
            self.downsample //= 2

        return {'loss': sum(losses)}
H
haoyuying 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

    def predict(self, imgpath: str, filelist: str, visualization: bool = True, save_path: str = 'result'):
        '''
        Detect images

        Args:
            imgpath(str): Image path .
            filelist(str): Path to get label name.
            visualization(bool): Whether to save result image.
            save_path(str) : Path to save detected images.

        Returns:
            boxes(np.ndarray): Predict box information.
            scores(np.ndarray): Predict score.
            labels(np.ndarray): Predict labels.
        '''
262
        self.eval()
263 264 265 266
        boxes = []
        scores = []
        self.downsample = 32
        im = self.transform(imgpath)
267
        h, w, c = utils.img_shape(imgpath)
268
        im_shape = paddle.to_tensor(np.array([[h, w]]).astype('int32'))
269
        label_names = utils.get_label_infos(filelist)
270 271 272 273 274 275 276 277 278 279 280
        img_data = paddle.to_tensor(np.array([im]).astype('float32'))

        outputs = self(img_data)

        for i, out in enumerate(outputs):
            anchor_mask = self.anchor_masks[i]
            mask_anchors = []
            for m in anchor_mask:
                mask_anchors.append((self.anchors[2 * m]))
                mask_anchors.append(self.anchors[2 * m + 1])

281 282 283 284 285 286 287 288
            box, score = F.yolo_box(
                x=out,
                img_size=im_shape,
                anchors=mask_anchors,
                class_num=self.class_num,
                conf_thresh=self.valid_thresh,
                downsample_ratio=self.downsample,
                name="yolo_box" + str(i))
289 290 291 292 293 294 295 296

            boxes.append(box)
            scores.append(paddle.transpose(score, perm=[0, 2, 1]))
            self.downsample //= 2

        yolo_boxes = paddle.concat(boxes, axis=1)
        yolo_scores = paddle.concat(scores, axis=2)

297 298 299 300 301 302 303 304
        pred = F.multiclass_nms(
            bboxes=yolo_boxes,
            scores=yolo_scores,
            score_threshold=self.valid_thresh,
            nms_top_k=self.nms_topk,
            keep_top_k=self.nms_posk,
            nms_threshold=self.nms_thresh,
            background_label=-1)
305 306 307 308 309 310 311

        bboxes = pred.numpy()
        labels = bboxes[:, 0].astype('int32')
        scores = bboxes[:, 1].astype('float32')
        boxes = bboxes[:, 2:].astype('float32')

        if visualization:
H
haoyuying 已提交
312 313
            if not os.path.exists(save_path):
                os.mkdir(save_path)
314
            utils.draw_boxes_on_image(imgpath, boxes, scores, labels, label_names, 0.5, save_path)
H
haoyuying 已提交
315 316

        return boxes, scores, labels
H
haoyuying 已提交
317 318


H
haoyuying 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
class StyleTransferModule(RunModule, ImageServing):
    def training_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for training, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.

        Returns:
            results(dict) : The model outputs, such as loss and metrics.
        '''
        return self.validation_step(batch, batch_idx)

    def validation_step(self, batch: int, batch_idx: int) -> dict:
        '''
        One step for validation, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]): The one batch data, which contains images and labels.
            batch_idx(int): The index of batch.

        Returns:
            results(dict) : The model outputs, such as metrics.
        '''
        mse_loss = nn.MSELoss()
        N, C, H, W = batch[0].shape
        batch[1] = batch[1][0].unsqueeze(0)
        self.setTarget(batch[1])

        y = self(batch[0])
        xc = paddle.to_tensor(batch[0].numpy().copy())
351 352
        y = utils.subtract_imagenet_mean_batch(y)
        xc = utils.subtract_imagenet_mean_batch(xc)
H
haoyuying 已提交
353 354 355 356 357
        features_y = self.getFeature(y)
        features_xc = self.getFeature(xc)
        f_xc_c = paddle.to_tensor(features_xc[1].numpy(), stop_gradient=True)
        content_loss = mse_loss(features_y[1], f_xc_c)

358
        batch[1] = utils.subtract_imagenet_mean_batch(batch[1])
H
haoyuying 已提交
359
        features_style = self.getFeature(batch[1])
360
        gram_style = [utils.gram_matrix(y) for y in features_style]
H
haoyuying 已提交
361 362
        style_loss = 0.
        for m in range(len(features_y)):
363
            gram_y = utils.gram_matrix(features_y[m])
H
haoyuying 已提交
364 365 366 367 368 369 370
            gram_s = paddle.to_tensor(np.tile(gram_style[m].numpy(), (N, 1, 1, 1)))
            style_loss += mse_loss(gram_y, gram_s[:N, :, :])

        loss = content_loss + style_loss

        return {'loss': loss, 'metrics': {'content gap': content_loss, 'style gap': style_loss}}

H
haoyuying 已提交
371
    def predict(self, origin: str, style: str, visualization: bool = True, save_path: str = 'result'):
H
haoyuying 已提交
372 373 374 375
        '''
        Colorize images

        Args:
H
haoyuying 已提交
376 377
            origin(str|np.array): Content image path or BGR image.
            style(str|np.array): Style image path or BGR image.
H
haoyuying 已提交
378 379 380 381 382 383
            visualization(bool): Whether to save colorized images.
            save_path(str) : Path to save colorized images.

        Returns:
            output(np.ndarray) : The style transformed images with bgr mode.
        '''
384
        self.eval()
H
haoyuying 已提交
385 386 387

        content = paddle.to_tensor(self.transform(origin).astype('float32'))
        style = paddle.to_tensor(self.transform(style).astype('float32'))
H
haoyuying 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        content = content.unsqueeze(0)
        style = style.unsqueeze(0)

        self.setTarget(style)
        output = self(content)
        output = paddle.clip(output[0].transpose((1, 2, 0)), 0, 255).numpy()

        if visualization:
            output = output.astype(np.uint8)
            style_name = "style_" + str(time.time()) + ".png"
            if not os.path.exists(save_path):
                os.mkdir(save_path)
            path = os.path.join(save_path, style_name)
            cv2.imwrite(path, output)
        return output