app_single.py 20.0 KB
Newer Older
走神的阿圆's avatar
走神的阿圆 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# coding: utf-8
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from flask import Flask, request, render_template
走神的阿圆's avatar
走神的阿圆 已提交
15 16
from paddlehub.serving.model_service.base_model_service import cv_module_info
from paddlehub.serving.model_service.base_model_service import nlp_module_info
走神的阿圆's avatar
走神的阿圆 已提交
17
from paddlehub.common import utils
走神的阿圆's avatar
走神的阿圆 已提交
18
import functools
走神的阿圆's avatar
走神的阿圆 已提交
19 20 21 22
import time
import os
import base64
import logging
走神的阿圆's avatar
走神的阿圆 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
import glob


def predict_v2(module_info, input):
    serving_method_name = module_info["method_name"]
    serving_method = getattr(module_info["module"], serving_method_name)
    predict_args = module_info["predict_args"]
    predict_args.update({"data": input})

    for item in serving_method.__code__.co_varnames:
        if item in module_info.keys():
            predict_args.update({item: module_info[item]})
    output = serving_method(**predict_args)
    return {"results": output}


走神的阿圆's avatar
走神的阿圆 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52
def predict_v2_advanced(module_info, input):
    serving_method_name = module_info["method_name"]
    serving_method = getattr(module_info["module"], serving_method_name)
    predict_args = module_info["predict_args"]
    predict_args.update(input)

    for item in serving_method.__code__.co_varnames:
        if item in module_info.keys():
            predict_args.update({item: module_info[item]})

    output = serving_method(**predict_args)
    return {"results": output}


走神的阿圆's avatar
走神的阿圆 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def predict_nlp(module_info, input_text, req_id, extra=None):
    method_name = module_info["method_name"]
    predict_method = getattr(module_info["module"], method_name)

    predict_args = {"data": input_text}
    if isinstance(predict_method, functools.partial):
        predict_method = predict_method.func
        predict_args.update({"sign_name": method_name})

    for item in predict_method.__code__.co_varnames:
        if item in module_info.keys():
            predict_args.update({item: module_info[item]})

    if module_info["name"] == "lac" and extra.get("user_dict", []) != []:
        predict_args.update({"user_dict": extra.get("user_dict", [])[0]})
68

走神的阿圆's avatar
走神的阿圆 已提交
69
    try:
走神的阿圆's avatar
走神的阿圆 已提交
70
        res = predict_method(**predict_args)
走神的阿圆's avatar
走神的阿圆 已提交
71 72 73
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
S
shenyuhan 已提交
74 75 76 77 78 79 80
        return {"results": "Please check data format!"}
    finally:
        user_dict = extra.get("user_dict", [])
        for item in user_dict:
            if os.path.exists(item):
                os.remove(item)
    return {"results": res}
走神的阿圆's avatar
走神的阿圆 已提交
81 82


走神的阿圆's avatar
走神的阿圆 已提交
83 84 85
def predict_classification(module_info, input_img, id, extra={}):
    method_name = module_info["method_name"]
    module = module_info["module"]
走神的阿圆's avatar
走神的阿圆 已提交
86
    predict_method = getattr(module, method_name)
走神的阿圆's avatar
走神的阿圆 已提交
87 88 89 90 91 92 93
    predict_args = {"data": {"image": input_img}}
    if isinstance(predict_method, functools.partial):
        predict_method = predict_method.func
        predict_args.update({"sign_name": method_name})
    for item in predict_method.__code__.co_varnames:
        if item in module_info.keys():
            predict_args.update({item: module_info[item]})
走神的阿圆's avatar
走神的阿圆 已提交
94
    try:
走神的阿圆's avatar
走神的阿圆 已提交
95
        results = predict_method(**predict_args)
走神的阿圆's avatar
走神的阿圆 已提交
96 97 98 99
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
S
shenyuhan 已提交
100
    finally:
走神的阿圆's avatar
走神的阿圆 已提交
101
        for item in input_img:
S
shenyuhan 已提交
102 103
            if os.path.exists(item):
                os.remove(item)
走神的阿圆's avatar
走神的阿圆 已提交
104 105 106
    return results


走神的阿圆's avatar
走神的阿圆 已提交
107 108 109
def predict_gan(module_info, input_img, id, extra={}):
    method_name = module_info["method_name"]
    module = module_info["module"]
走神的阿圆's avatar
走神的阿圆 已提交
110
    predict_method = getattr(module, method_name)
走神的阿圆's avatar
走神的阿圆 已提交
111 112 113 114 115 116 117 118 119
    predict_args = {"data": {"image": input_img}}
    predict_args["data"].update(extra)
    if isinstance(predict_method, functools.partial):
        predict_method = predict_method.func
        predict_args.update({"sign_name": method_name})
    for item in predict_method.__code__.co_varnames:
        if item in module_info.keys():
            predict_args.update({item: module_info[item]})
    results = predict_method(**predict_args)
走神的阿圆's avatar
走神的阿圆 已提交
120
    try:
走神的阿圆's avatar
走神的阿圆 已提交
121
        pass
走神的阿圆's avatar
走神的阿圆 已提交
122 123 124 125
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
S
shenyuhan 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    finally:
        base64_list = []
        results_pack = []
        for index in range(len(input_img)):
            item = input_img[index]
            output_file = results[index].split(" ")[-1]
            with open(output_file, "rb") as fp:
                b_head = "data:image/" + item.split(".")[-1] + ";base64"
                b_body = base64.b64encode(fp.read())
                b_body = str(b_body).replace("b'", "").replace("'", "")
                b_img = b_head + "," + b_body
                base64_list.append(b_img)
                results[index] = results[index].replace(id + "_", "")
                results[index] = {"path": results[index]}
                results[index].update({"base64": b_img})
                results_pack.append(results[index])
            os.remove(item)
            os.remove(output_file)
走神的阿圆's avatar
走神的阿圆 已提交
144 145 146
    return results_pack


走神的阿圆's avatar
走神的阿圆 已提交
147
def predict_mask(module_info, input_img, id, extra=None, r_img=True):
走神的阿圆's avatar
走神的阿圆 已提交
148
    output_folder = "detection_result"
走神的阿圆's avatar
走神的阿圆 已提交
149 150
    method_name = module_info["method_name"]
    module = module_info["module"]
走神的阿圆's avatar
走神的阿圆 已提交
151
    predict_method = getattr(module, method_name)
走神的阿圆's avatar
走神的阿圆 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    data_len = len(input_img) if input_img is not None else 0
    data = {}
    if input_img is not None:
        input_img = {"image": input_img}
        data.update(input_img)
    if extra is not None:
        data.update(extra)
        r_img = True if "r_img" in extra.keys() else False
    predict_args = {"data": data}
    if isinstance(predict_method, functools.partial):
        predict_method = predict_method.func
        predict_args.update({"sign_name": method_name})
    for item in predict_method.__code__.co_varnames:
        if item in module_info.keys():
            predict_args.update({item: module_info[item]})
走神的阿圆's avatar
走神的阿圆 已提交
167
    try:
走神的阿圆's avatar
走神的阿圆 已提交
168 169
        results = predict_method(**predict_args)
        results = utils.handle_mask_results(results, data_len)
走神的阿圆's avatar
走神的阿圆 已提交
170 171 172 173 174 175 176 177 178 179 180 181
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
    finally:
        base64_list = []
        results_pack = []
        if input_img is not None:
            if r_img is False:
                for index in range(len(results)):
                    results[index]["path"] = ""
                results_pack = results
走神的阿圆's avatar
走神的阿圆 已提交
182 183 184 185 186
                str_id = id + "*"
                files_deleted = glob.glob(str_id)
                for path in files_deleted:
                    if os.path.exists(path):
                        os.remove(path)
走神的阿圆's avatar
走神的阿圆 已提交
187 188 189 190
            else:
                input_img = input_img.get("image", [])
                for index in range(len(input_img)):
                    item = input_img[index]
走神的阿圆's avatar
走神的阿圆 已提交
191 192
                    file_path = os.path.join(output_folder, item)
                    if not os.path.exists(file_path):
走神的阿圆's avatar
走神的阿圆 已提交
193
                        results_pack.append(results[index])
走神的阿圆's avatar
走神的阿圆 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
                        os.remove(item)
                    else:
                        with open(file_path, "rb") as fp:
                            b_head = "data:image/" + item.split(
                                ".")[-1] + ";base64"
                            b_body = base64.b64encode(fp.read())
                            b_body = str(b_body).replace("b'", "").replace(
                                "'", "")
                            b_img = b_head + "," + b_body
                            base64_list.append(b_img)
                            results[index]["path"] = results[index]["path"].replace(
                                id + "_", "") if results[index]["path"] != "" \
                                else ""

                            results[index].update({"base64": b_img})
                            results_pack.append(results[index])
                        os.remove(item)
                        os.remove(os.path.join(output_folder, item))
走神的阿圆's avatar
走神的阿圆 已提交
212 213 214 215 216 217
        else:
            results_pack = results

    return results_pack


走神的阿圆's avatar
走神的阿圆 已提交
218
def predict_object_detection(module_info, input_img, id, extra={}):
走神的阿圆's avatar
走神的阿圆 已提交
219
    output_folder = "detection_result"
走神的阿圆's avatar
走神的阿圆 已提交
220 221
    method_name = module_info["method_name"]
    module = module_info["module"]
走神的阿圆's avatar
走神的阿圆 已提交
222
    predict_method = getattr(module, method_name)
走神的阿圆's avatar
走神的阿圆 已提交
223 224 225 226 227 228 229
    predict_args = {"data": {"image": input_img}}
    if isinstance(predict_method, functools.partial):
        predict_method = predict_method.func
        predict_args.update({"sign_name": method_name})
    for item in predict_method.__code__.co_varnames:
        if item in module_info.keys():
            predict_args.update({item: module_info[item]})
走神的阿圆's avatar
走神的阿圆 已提交
230
    try:
走神的阿圆's avatar
走神的阿圆 已提交
231
        results = predict_method(**predict_args)
走神的阿圆's avatar
走神的阿圆 已提交
232 233 234 235
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
S
shenyuhan 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    finally:
        base64_list = []
        results_pack = []
        for index in range(len(input_img)):
            item = input_img[index]
            with open(os.path.join(output_folder, item), "rb") as fp:
                b_head = "data:image/" + item.split(".")[-1] + ";base64"
                b_body = base64.b64encode(fp.read())
                b_body = str(b_body).replace("b'", "").replace("'", "")
                b_img = b_head + "," + b_body
                base64_list.append(b_img)
                results[index]["path"] = results[index]["path"].replace(
                    id + "_", "")
                results[index].update({"base64": b_img})
                results_pack.append(results[index])
            os.remove(item)
            os.remove(os.path.join(output_folder, item))
走神的阿圆's avatar
走神的阿圆 已提交
253 254 255
    return results_pack


走神的阿圆's avatar
走神的阿圆 已提交
256 257 258
def predict_semantic_segmentation(module_info, input_img, id, extra={}):
    method_name = module_info["method_name"]
    module = module_info["module"]
走神的阿圆's avatar
走神的阿圆 已提交
259
    predict_method = getattr(module, method_name)
走神的阿圆's avatar
走神的阿圆 已提交
260 261 262 263 264 265 266
    predict_args = {"data": {"image": input_img}}
    if isinstance(predict_method, functools.partial):
        predict_method = predict_method.func
        predict_args.update({"sign_name": method_name})
    for item in predict_method.__code__.co_varnames:
        if item in module_info.keys():
            predict_args.update({item: module_info[item]})
走神的阿圆's avatar
走神的阿圆 已提交
267
    try:
走神的阿圆's avatar
走神的阿圆 已提交
268
        results = predict_method(**predict_args)
走神的阿圆's avatar
走神的阿圆 已提交
269 270 271 272
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
S
shenyuhan 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    finally:
        base64_list = []
        results_pack = []
        for index in range(len(input_img)):
            item = input_img[index]
            with open(results[index]["processed"], "rb") as fp:
                b_head = "data:image/png;base64"
                b_body = base64.b64encode(fp.read())
                b_body = str(b_body).replace("b'", "").replace("'", "")
                b_img = b_head + "," + b_body
                base64_list.append(b_img)
                output_file_path = results[index]["processed"]
                results[index]["origin"] = results[index]["origin"].replace(
                    id + "_", "")
                results[index]["processed"] = results[index][
                    "processed"].replace(id + "_", "")
                results[index].update({"base64": b_img})
                results_pack.append(results[index])
            os.remove(item)
            if output_file_path != "":
                os.remove(output_file_path)
走神的阿圆's avatar
走神的阿圆 已提交
294 295 296
    return results_pack


297 298 299 300
def create_app(init_flag=False, configs=None):
    if init_flag is False:
        if configs is None:
            raise RuntimeError("Lack of necessary configs.")
走神的阿圆's avatar
走神的阿圆 已提交
301
        config_with_file(configs)
302

走神的阿圆's avatar
走神的阿圆 已提交
303 304
    app_instance = Flask(__name__)
    app_instance.config["JSON_AS_ASCII"] = False
走神的阿圆's avatar
走神的阿圆 已提交
305
    logging.basicConfig()
走神的阿圆's avatar
走神的阿圆 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    gunicorn_logger = logging.getLogger('gunicorn.error')
    app_instance.logger.handlers = gunicorn_logger.handlers
    app_instance.logger.setLevel(gunicorn_logger.level)

    @app_instance.route("/", methods=["GET", "POST"])
    def index():
        return render_template("main.html")

    @app_instance.before_request
    def before_request():
        request.data = {"id": utils.md5(request.remote_addr + str(time.time()))}

    @app_instance.route("/get/modules", methods=["GET", "POST"])
    def get_modules_info():
        module_info = {}
走神的阿圆's avatar
走神的阿圆 已提交
321
        if len(nlp_module_info.nlp_modules) > 0:
走神的阿圆's avatar
走神的阿圆 已提交
322
            module_info.update({"nlp_module": [{"Choose...": "Choose..."}]})
走神的阿圆's avatar
走神的阿圆 已提交
323
            for item in nlp_module_info.nlp_modules:
走神的阿圆's avatar
走神的阿圆 已提交
324
                module_info["nlp_module"].append({item: item})
走神的阿圆's avatar
走神的阿圆 已提交
325
        if len(cv_module_info.cv_modules) > 0:
走神的阿圆's avatar
走神的阿圆 已提交
326
            module_info.update({"cv_module": [{"Choose...": "Choose..."}]})
走神的阿圆's avatar
走神的阿圆 已提交
327
            for item in cv_module_info.cv_modules:
走神的阿圆's avatar
走神的阿圆 已提交
328 329 330 331 332
                module_info["cv_module"].append({item: item})
        return {"module_info": module_info}

    @app_instance.route("/predict/image/<module_name>", methods=["POST"])
    def predict_image(module_name):
走神的阿圆's avatar
走神的阿圆 已提交
333
        if request.path.split("/")[-1] not in cv_module_info.modules_info:
S
shenyuhan 已提交
334
            return {"error": "Module {} is not available.".format(module_name)}
走神的阿圆's avatar
走神的阿圆 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348
        module_info = cv_module_info.get_module_info(module_name)
        if module_info["code_version"] == "v2":
            results = {}
            # results = predict_v2(module_info, inputs)
            results.update({
                "Warnning":
                "This usage is out of date, please "
                "use 'application/json' as "
                "content-type to post to "
                "/predict/%s. See "
                "'https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.5/docs/tutorial/serving.md' for more details."
                % (module_name)
            })
            return results
走神的阿圆's avatar
走神的阿圆 已提交
349 350
        req_id = request.data.get("id")
        img_base64 = request.form.getlist("image")
S
shenyuhan 已提交
351 352 353
        extra_info = {}
        for item in list(request.form.keys()):
            extra_info.update({item: request.form.getlist(item)})
走神的阿圆's avatar
走神的阿圆 已提交
354 355 356 357 358 359 360 361

        for key in extra_info.keys():
            if isinstance(extra_info[key], list):
                extra_info[key] = utils.base64s_to_cvmats(
                    eval(extra_info[key][0])["b64s"]) if isinstance(
                        extra_info[key][0], str
                    ) and "b64s" in extra_info[key][0] else extra_info[key]

走神的阿圆's avatar
走神的阿圆 已提交
362 363 364 365 366 367 368
        file_name_list = []
        if img_base64 != []:
            for item in img_base64:
                ext = item.split(";")[0].split("/")[-1]
                if ext not in ["jpeg", "jpg", "png"]:
                    return {"result": "Unrecognized file type"}
                filename = req_id + "_" \
走神的阿圆's avatar
走神的阿圆 已提交
369
                           + utils.md5(str(time.time()) + item[0:20]) \
走神的阿圆's avatar
走神的阿圆 已提交
370 371 372 373 374 375 376 377 378 379 380 381
                           + "." \
                           + ext
                img_data = base64.b64decode(item.split(',')[-1])
                file_name_list.append(filename)
                with open(filename, "wb") as fp:
                    fp.write(img_data)
        else:
            file = request.files.getlist("image")
            for item in file:
                file_name = req_id + "_" + item.filename
                item.save(file_name)
                file_name_list.append(file_name)
走神的阿圆's avatar
走神的阿圆 已提交
382 383 384 385 386
        # module = default_module_manager.get_module(module_name)
        # predict_func_name = cv_module_info.get_module_info(module_name)[
        #     "method_name"]
        module = module_info["module"]
        predict_func_name = cv_module_info.cv_module_method.get(module_name, "")
走神的阿圆's avatar
走神的阿圆 已提交
387 388 389 390 391
        if predict_func_name != "":
            predict_func = eval(predict_func_name)
        else:
            module_type = module.type.split("/")[-1].replace("-", "_").lower()
            predict_func = eval("predict_" + module_type)
走神的阿圆's avatar
走神的阿圆 已提交
392 393 394 395
        if file_name_list == []:
            file_name_list = None
        if extra_info == {}:
            extra_info = None
走神的阿圆's avatar
走神的阿圆 已提交
396
        results = predict_func(module_info, file_name_list, req_id, extra_info)
走神的阿圆's avatar
走神的阿圆 已提交
397 398 399 400 401
        r = {"results": str(results)}
        return r

    @app_instance.route("/predict/text/<module_name>", methods=["POST"])
    def predict_text(module_name):
走神的阿圆's avatar
走神的阿圆 已提交
402
        if request.path.split("/")[-1] not in nlp_module_info.nlp_modules:
S
shenyuhan 已提交
403
            return {"error": "Module {} is not available.".format(module_name)}
走神的阿圆's avatar
走神的阿圆 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417
        module_info = nlp_module_info.get_module_info(module_name)
        if module_info["code_version"] == "v2":
            results = {}
            # results = predict_v2(module_info, inputs)
            results.update({
                "Warnning":
                "This usage is out of date, please "
                "use 'application/json' as "
                "content-type to post to "
                "/predict/%s. See "
                "'https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.5/docs/tutorial/serving.md' for more details."
                % (module_name)
            })
            return results
走神的阿圆's avatar
走神的阿圆 已提交
418
        req_id = request.data.get("id")
S
shenyuhan 已提交
419 420 421 422 423 424 425 426 427 428
        inputs = {}
        for item in list(request.form.keys()):
            inputs.update({item: request.form.getlist(item)})
        files = {}
        for file_key in list(request.files.keys()):
            files[file_key] = []
            for file in request.files.getlist(file_key):
                file_name = req_id + "_" + file.filename
                files[file_key].append(file_name)
                file.save(file_name)
走神的阿圆's avatar
走神的阿圆 已提交
429

走神的阿圆's avatar
走神的阿圆 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442
        results = predict_nlp(
            module_info=module_info,
            input_text=inputs,
            req_id=req_id,
            extra=files)
        return results

    @app_instance.route("/predict/<module_name>", methods=["POST"])
    def predict_modulev2(module_name):
        if module_name in nlp_module_info.nlp_modules:
            module_info = nlp_module_info.get_module_info(module_name)
        elif module_name in cv_module_info.cv_modules:
            module_info = cv_module_info.get_module_info(module_name)
走神的阿圆's avatar
走神的阿圆 已提交
443
        else:
走神的阿圆's avatar
走神的阿圆 已提交
444 445 446
            return {"Error": "Module {} is not available.".format(module_name)}
        inputs = request.json
        results = predict_v2_advanced(module_info, inputs)
S
shenyuhan 已提交
447
        return results
走神的阿圆's avatar
走神的阿圆 已提交
448 449 450 451 452

    return app_instance


def config_with_file(configs):
走神的阿圆's avatar
走神的阿圆 已提交
453 454 455 456 457 458 459 460 461
    for key, value in configs.items():
        if "CV" == value["category"]:
            cv_module_info.add_module(key, {key: value})
        elif "NLP" == value["category"]:
            nlp_module_info.add_module(key, {key: value})
        print(key, "==", value["version"])


def run(configs=None, port=8866):
走神的阿圆's avatar
走神的阿圆 已提交
462 463 464 465 466
    if configs is not None:
        config_with_file(configs)
    else:
        print("Start failed cause of missing configuration.")
        return
467 468
    my_app = create_app(init_flag=True)
    my_app.run(host="0.0.0.0", port=port, debug=False, threaded=False)
走神的阿圆's avatar
走神的阿圆 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    print("PaddleHub-Serving has been stopped.")


if __name__ == "__main__":
    configs = [{
        'category': 'NLP',
        u'queue_size': 20,
        u'version': u'1.0.0',
        u'module': 'lac',
        u'batch_size': 20
    },
               {
                   'category': 'NLP',
                   u'queue_size': 20,
                   u'version': u'1.0.0',
                   u'module': 'senta_lstm',
                   u'batch_size': 20
               },
               {
                   'category': 'CV',
                   u'queue_size': 20,
                   u'version': u'1.0.0',
                   u'module': 'yolov3_coco2017',
                   u'batch_size': 20
               },
               {
                   'category': 'CV',
                   u'queue_size': 20,
                   u'version': u'1.0.0',
                   u'module': 'faster_rcnn_coco2017',
                   u'batch_size': 20
               }]
    run(is_use_gpu=False, configs=configs)