nlp_reader.py 24.3 KB
Newer Older
S
Steffy-zxf 已提交
1
#coding:utf-8
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18 19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
import csv
Z
Zeyu Chen 已提交
21
import json
22
import numpy as np
S
Steffy-zxf 已提交
23 24
import platform
import six
S
Steffy-zxf 已提交
25
import sys
Z
Zeyu Chen 已提交
26
from collections import namedtuple
27

W
wuzewu 已提交
28
import paddle
29

W
wuzewu 已提交
30
from paddlehub.reader import tokenization
31
from paddlehub.common.logger import logger
W
wuzewu 已提交
32
from paddlehub.common.utils import sys_stdout_encoding
33
from paddlehub.dataset.dataset import InputExample
Z
Zeyu Chen 已提交
34
from .batching import pad_batch_data
W
wuzewu 已提交
35
import paddlehub as hub
36 37


Z
Zeyu Chen 已提交
38
class BaseReader(object):
39 40 41
    def __init__(self,
                 dataset,
                 vocab_path,
Z
Zeyu Chen 已提交
42 43
                 label_map_config=None,
                 max_seq_len=512,
44 45 46 47 48 49
                 do_lower_case=True,
                 random_seed=None):
        self.max_seq_len = max_seq_len
        self.tokenizer = tokenization.FullTokenizer(
            vocab_file=vocab_path, do_lower_case=do_lower_case)
        self.vocab = self.tokenizer.vocab
Z
Zeyu Chen 已提交
50 51 52 53
        self.dataset = dataset
        self.pad_id = self.vocab["[PAD]"]
        self.cls_id = self.vocab["[CLS]"]
        self.sep_id = self.vocab["[SEP]"]
Z
Zeyu Chen 已提交
54
        self.in_tokens = False
55 56 57

        np.random.seed(random_seed)

Z
Zeyu Chen 已提交
58 59 60 61
        # generate label map
        self.label_map = {}
        for index, label in enumerate(self.dataset.get_labels()):
            self.label_map[label] = index
62
        logger.info("Dataset label map = {}".format(self.label_map))
Z
Zeyu Chen 已提交
63 64 65 66

        self.current_example = 0
        self.current_epoch = 0

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        self.num_examples = {'train': -1, 'dev': -1, 'test': -1}

    def get_train_examples(self):
        """Gets a collection of `InputExample`s for the train set."""
        return self.dataset.get_train_examples()

    def get_dev_examples(self):
        """Gets a collection of `InputExample`s for the dev set."""
        return self.dataset.get_dev_examples()

    def get_val_examples(self):
        """Gets a collection of `InputExample`s for the val set."""
        return self.dataset.get_val_examples()

    def get_test_examples(self):
        """Gets a collection of `InputExample`s for prediction."""
        return self.dataset.get_test_examples()

Z
Zeyu Chen 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    def get_train_progress(self):
        """Gets progress for training phase."""
        return self.current_example, self.current_epoch

    def _truncate_seq_pair(self, tokens_a, tokens_b, max_length):
        """Truncates a sequence pair in place to the maximum length."""

        # This is a simple heuristic which will always truncate the longer sequence
        # one token at a time. This makes more sense than truncating an equal percent
        # of tokens from each, since if one sequence is very short then each token
        # that's truncated likely contains more information than a longer sequence.
        while True:
            total_length = len(tokens_a) + len(tokens_b)
            if total_length <= max_length:
                break
            if len(tokens_a) > len(tokens_b):
                tokens_a.pop()
            else:
                tokens_b.pop()

105 106 107 108 109
    def _convert_example_to_record(self,
                                   example,
                                   max_seq_length,
                                   tokenizer,
                                   phase=None):
Z
Zeyu Chen 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        """Converts a single `Example` into a single `Record`."""

        text_a = tokenization.convert_to_unicode(example.text_a)
        tokens_a = tokenizer.tokenize(text_a)
        tokens_b = None
        if example.text_b is not None:
            #if "text_b" in example._fields:
            text_b = tokenization.convert_to_unicode(example.text_b)
            tokens_b = tokenizer.tokenize(text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        # The convention in BERT/ERNIE is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0     0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambiguously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        text_type_ids = []
        tokens.append("[CLS]")
        text_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            text_type_ids.append(0)
        tokens.append("[SEP]")
        text_type_ids.append(0)
157

Z
Zeyu Chen 已提交
158 159 160 161 162 163 164 165 166 167 168
        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                text_type_ids.append(1)
            tokens.append("[SEP]")
            text_type_ids.append(1)

        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))

        if self.label_map:
169 170 171
            if example.label not in self.label_map:
                raise KeyError(
                    "example.label = {%s} not in label" % example.label)
Z
Zeyu Chen 已提交
172 173 174 175 176 177 178 179
            label_id = self.label_map[example.label]
        else:
            label_id = example.label

        Record = namedtuple(
            'Record',
            ['token_ids', 'text_type_ids', 'position_ids', 'label_id'])

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        if phase != "predict":
            Record = namedtuple(
                'Record',
                ['token_ids', 'text_type_ids', 'position_ids', 'label_id'])

            record = Record(
                token_ids=token_ids,
                text_type_ids=text_type_ids,
                position_ids=position_ids,
                label_id=label_id)
        else:
            Record = namedtuple('Record',
                                ['token_ids', 'text_type_ids', 'position_ids'])
            record = Record(
                token_ids=token_ids,
                text_type_ids=text_type_ids,
                position_ids=position_ids)

Z
Zeyu Chen 已提交
198 199 200 201 202 203 204 205 206
        return record

    def _prepare_batch_data(self, examples, batch_size, phase=None):
        """generate batch records"""
        batch_records, max_len = [], 0
        for index, example in enumerate(examples):
            if phase == "train":
                self.current_example = index
            record = self._convert_example_to_record(example, self.max_seq_len,
207
                                                     self.tokenizer, phase)
Z
Zeyu Chen 已提交
208 209 210 211 212 213 214 215
            max_len = max(max_len, len(record.token_ids))
            if self.in_tokens:
                to_append = (len(batch_records) + 1) * max_len <= batch_size
            else:
                to_append = len(batch_records) < batch_size
            if to_append:
                batch_records.append(record)
            else:
216
                yield self._pad_batch_records(batch_records, phase)
Z
Zeyu Chen 已提交
217 218 219
                batch_records, max_len = [record], len(record.token_ids)

        if batch_records:
220
            yield self._pad_batch_records(batch_records, phase)
Z
Zeyu Chen 已提交
221

222 223 224 225 226 227 228 229
    def get_num_examples(self, phase):
        """Get number of examples for train, dev or test."""
        if phase not in ['train', 'val', 'dev', 'test']:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'val'/'dev', 'test']."
            )
        return self.num_examples[phase]

230 231 232 233 234
    def data_generator(self,
                       batch_size=1,
                       phase='train',
                       shuffle=True,
                       data=None):
Z
Zeyu Chen 已提交
235

236
        if phase == 'train':
237
            shuffle = True
238 239 240
            examples = self.get_train_examples()
            self.num_examples['train'] = len(examples)
        elif phase == 'val' or phase == 'dev':
241
            shuffle = False
242 243 244
            examples = self.get_dev_examples()
            self.num_examples['dev'] = len(examples)
        elif phase == 'test':
245
            shuffle = False
246 247
            examples = self.get_test_examples()
            self.num_examples['test'] = len(examples)
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        elif phase == 'predict':
            shuffle = False
            examples = []
            seq_id = 0

            for item in data:
                # set label in order to run the program
                label = "0"
                if len(item) == 1:
                    item_i = InputExample(
                        guid=seq_id, text_a=item[0], label=label)
                elif len(item) == 2:
                    item_i = InputExample(
                        guid=seq_id,
                        text_a=item[0],
                        text_b=item[1],
                        label=label)
                else:
                    raise ValueError(
                        "The length of input_text is out of handling, which must be 1 or 2!"
                    )
                examples.append(item_i)
                seq_id += 1
271 272
        else:
            raise ValueError(
273 274
                "Unknown phase, which should be in ['train', 'dev', 'test', 'predict']."
            )
275

Z
Zeyu Chen 已提交
276
        def wrapper():
277 278 279
            if shuffle:
                np.random.shuffle(examples)

Z
Zeyu Chen 已提交
280 281
            for batch_data in self._prepare_batch_data(
                    examples, batch_size, phase=phase):
282 283 284 285 286
                yield [batch_data]

        return wrapper


Z
Zeyu Chen 已提交
287
class ClassifyReader(BaseReader):
288
    def _pad_batch_records(self, batch_records, phase=None):
Z
Zeyu Chen 已提交
289 290 291
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
292

Z
Zeyu Chen 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305
        padded_token_ids, input_mask = pad_batch_data(
            batch_token_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id,
            return_input_mask=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320
        if phase != "predict":
            batch_labels = [record.label_id for record in batch_records]
            batch_labels = np.array(batch_labels).astype("int64").reshape(
                [-1, 1])

            return_list = [
                padded_token_ids, padded_position_ids, padded_text_type_ids,
                input_mask, batch_labels
            ]
        else:
            return_list = [
                padded_token_ids, padded_position_ids, padded_text_type_ids,
                input_mask
            ]
321

Z
Zeyu Chen 已提交
322
        return return_list
323 324


Z
Zeyu Chen 已提交
325
class SequenceLabelReader(BaseReader):
326
    def _pad_batch_records(self, batch_records, phase=None):
Z
Zeyu Chen 已提交
327 328 329
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]
330

Z
Zeyu Chen 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        # padding
        padded_token_ids, input_mask, batch_seq_lens = pad_batch_data(
            batch_token_ids,
            pad_idx=self.pad_id,
            max_seq_len=self.max_seq_len,
            return_input_mask=True,
            return_seq_lens=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        if phase != "predict":
            batch_label_ids = [record.label_ids for record in batch_records]
            padded_label_ids = pad_batch_data(
                batch_label_ids,
                max_seq_len=self.max_seq_len,
                pad_idx=len(self.label_map) - 1)

            return_list = [
                padded_token_ids, padded_position_ids, padded_text_type_ids,
                input_mask, padded_label_ids, batch_seq_lens
            ]
        else:
            return_list = [
                padded_token_ids, padded_position_ids, padded_text_type_ids,
                input_mask, batch_seq_lens
            ]
Z
Zeyu Chen 已提交
363 364
        return return_list

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    def _reseg_token_label(self, tokens, tokenizer, phase, labels=None):
        if phase != "predict":
            if len(tokens) != len(labels):
                raise ValueError(
                    "The length of tokens must be same with labels")
            ret_tokens = []
            ret_labels = []
            for token, label in zip(tokens, labels):
                sub_token = tokenizer.tokenize(token)
                if len(sub_token) == 0:
                    continue
                ret_tokens.extend(sub_token)
                ret_labels.append(label)
                if len(sub_token) < 2:
                    continue
                sub_label = label
                if label.startswith("B-"):
                    sub_label = "I-" + label[2:]
                ret_labels.extend([sub_label] * (len(sub_token) - 1))

A
Austendeng 已提交
385
            if len(ret_tokens) != len(ret_labels):
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
                raise ValueError(
                    "The length of ret_tokens can't match with labels")
            return ret_tokens, ret_labels
        else:
            ret_tokens = []
            for token in tokens:
                sub_token = tokenizer.tokenize(token)
                if len(sub_token) == 0:
                    continue
                ret_tokens.extend(sub_token)
                if len(sub_token) < 2:
                    continue

            return ret_tokens

    def _convert_example_to_record(self,
                                   example,
                                   max_seq_length,
                                   tokenizer,
                                   phase=None):
Z
Zeyu Chen 已提交
406

407
        tokens = tokenization.convert_to_unicode(example.text_a).split(u"")
Z
Zeyu Chen 已提交
408

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        if phase != "predict":
            labels = tokenization.convert_to_unicode(example.label).split(u"")
            tokens, labels = self._reseg_token_label(
                tokens=tokens, labels=labels, tokenizer=tokenizer, phase=phase)

            if len(tokens) > max_seq_length - 2:
                tokens = tokens[0:(max_seq_length - 2)]
                labels = labels[0:(max_seq_length - 2)]

            tokens = ["[CLS]"] + tokens + ["[SEP]"]
            token_ids = tokenizer.convert_tokens_to_ids(tokens)
            position_ids = list(range(len(token_ids)))
            text_type_ids = [0] * len(token_ids)
            no_entity_id = len(self.label_map) - 1
            label_ids = [no_entity_id
                         ] + [self.label_map[label]
                              for label in labels] + [no_entity_id]

            Record = namedtuple(
                'Record',
                ['token_ids', 'text_type_ids', 'position_ids', 'label_ids'])
            record = Record(
                token_ids=token_ids,
                text_type_ids=text_type_ids,
                position_ids=position_ids,
                label_ids=label_ids)
        else:
            tokens = self._reseg_token_label(
                tokens=tokens, tokenizer=tokenizer, phase=phase)

            if len(tokens) > max_seq_length - 2:
                tokens = tokens[0:(max_seq_length - 2)]

            tokens = ["[CLS]"] + tokens + ["[SEP]"]
            token_ids = tokenizer.convert_tokens_to_ids(tokens)
            position_ids = list(range(len(token_ids)))
            text_type_ids = [0] * len(token_ids)

            Record = namedtuple('Record',
                                ['token_ids', 'text_type_ids', 'position_ids'])
            record = Record(
                token_ids=token_ids,
                text_type_ids=text_type_ids,
                position_ids=position_ids,
            )
Z
Zeyu Chen 已提交
454 455 456 457

        return record


Z
Zeyu Chen 已提交
458
class LACClassifyReader(object):
Z
Zeyu Chen 已提交
459
    def __init__(self, dataset, vocab_path):
W
wuzewu 已提交
460
        self.dataset = dataset
Z
Zeyu Chen 已提交
461
        self.lac = hub.Module(name="lac")
W
wuzewu 已提交
462
        self.tokenizer = tokenization.FullTokenizer(
Z
Zeyu Chen 已提交
463
            vocab_file=vocab_path, do_lower_case=False)
W
wuzewu 已提交
464 465 466 467 468
        self.vocab = self.tokenizer.vocab
        self.feed_key = list(
            self.lac.processor.data_format(
                sign_name="lexical_analysis").keys())[0]

Z
Zeyu Chen 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
        self.num_examples = {'train': -1, 'dev': -1, 'test': -1}

    def get_num_examples(self, phase):
        """Get number of examples for train, dev or test."""
        if phase not in ['train', 'val', 'dev', 'test']:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'val'/'dev', 'test']."
            )
        return self.num_examples[phase]

    def get_train_examples(self):
        """Gets a collection of `InputExample`s for the train set."""
        return self.dataset.get_train_examples()

    def get_dev_examples(self):
        """Gets a collection of `InputExample`s for the dev set."""
        return self.dataset.get_dev_examples()

    def get_val_examples(self):
        """Gets a collection of `InputExample`s for the val set."""
        return self.dataset.get_val_examples()

    def get_test_examples(self):
        """Gets a collection of `InputExample`s for prediction."""
        return self.dataset.get_test_examples()

    def get_train_progress(self):
        """Gets progress for training phase."""
        return self.current_example, self.current_epoch

W
wuzewu 已提交
499 500 501 502 503 504
    def data_generator(self,
                       batch_size=1,
                       phase="train",
                       shuffle=False,
                       data=None):
        if phase == "train":
S
Steffy-zxf 已提交
505
            shuffle = True
W
wuzewu 已提交
506
            data = self.dataset.get_train_examples()
Z
Zeyu Chen 已提交
507
            self.num_examples['train'] = len(data)
W
wuzewu 已提交
508 509 510
        elif phase == "test":
            shuffle = False
            data = self.dataset.get_test_examples()
S
Steffy-zxf 已提交
511
            self.num_examples['test'] = len(data)
W
wuzewu 已提交
512 513 514
        elif phase == "val" or phase == "dev":
            shuffle = False
            data = self.dataset.get_dev_examples()
S
Steffy-zxf 已提交
515
            self.num_examples['dev'] = len(data)
W
wuzewu 已提交
516 517
        elif phase == "predict":
            data = data
Z
Zeyu Chen 已提交
518 519 520
        else:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'dev', 'test'].")
W
wuzewu 已提交
521 522 523 524 525 526 527 528

        def preprocess(text):
            data_dict = {self.feed_key: [text]}
            processed = self.lac.lexical_analysis(data=data_dict)
            processed = [
                self.vocab[word] for word in processed[0]['word']
                if word in self.vocab
            ]
S
Steffy-zxf 已提交
529
            if len(processed) == 0:
S
Steffy-zxf 已提交
530
                if six.PY2:
W
wuzewu 已提交
531
                    text = text.encode(sys_stdout_encoding())
S
Steffy-zxf 已提交
532 533 534
                logger.warning(
                    "The words in text %s can't be found in the vocabulary." %
                    (text))
W
wuzewu 已提交
535 536 537
            return processed

        def _data_reader():
S
Steffy-zxf 已提交
538 539 540
            if shuffle:
                np.random.shuffle(data)

W
wuzewu 已提交
541 542 543
            if phase == "predict":
                for text in data:
                    text = preprocess(text)
S
Steffy-zxf 已提交
544 545
                    if not text:
                        continue
W
wuzewu 已提交
546 547 548 549
                    yield (text, )
            else:
                for item in data:
                    text = preprocess(item.text_a)
S
Steffy-zxf 已提交
550 551
                    if not text:
                        continue
W
wuzewu 已提交
552 553 554 555 556
                    yield (text, item.label)

        return paddle.batch(_data_reader, batch_size=batch_size)


S
Steffy-zxf 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
class MultiLabelClassifyReader(BaseReader):
    def _pad_batch_records(self, batch_records, phase=None):
        batch_token_ids = [record.token_ids for record in batch_records]
        batch_text_type_ids = [record.text_type_ids for record in batch_records]
        batch_position_ids = [record.position_ids for record in batch_records]

        # padding
        padded_token_ids, input_mask = pad_batch_data(
            batch_token_ids,
            pad_idx=self.pad_id,
            max_seq_len=self.max_seq_len,
            return_input_mask=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)

        if phase != "predict":
            batch_labels_ids = [record.label_ids for record in batch_records]
            num_label = len(self.dataset.get_labels())
            batch_labels = np.array(batch_labels_ids).astype("int64").reshape(
                [-1, num_label])

            return_list = [
                padded_token_ids, padded_position_ids, padded_text_type_ids,
                input_mask, batch_labels
            ]
        else:
            return_list = [
                padded_token_ids, padded_position_ids, padded_text_type_ids,
                input_mask
            ]
        return return_list

    def _convert_example_to_record(self,
                                   example,
                                   max_seq_length,
                                   tokenizer,
                                   phase=None):
        """Converts a single `Example` into a single `Record`."""

        text_a = tokenization.convert_to_unicode(example.text_a)
        tokens_a = tokenizer.tokenize(text_a)
        tokens_b = None
        if example.text_b is not None:
            #if "text_b" in example._fields:
            text_b = tokenization.convert_to_unicode(example.text_b)
            tokens_b = tokenizer.tokenize(text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        tokens = []
        text_type_ids = []
        tokens.append("[CLS]")
        text_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            text_type_ids.append(0)
        tokens.append("[SEP]")
        text_type_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                text_type_ids.append(1)
            tokens.append("[SEP]")
            text_type_ids.append(1)

        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))

        label_ids = []
        for label in example.label:
            label_ids.append(int(label))

        if phase != "predict":
            Record = namedtuple(
                'Record',
                ['token_ids', 'text_type_ids', 'position_ids', 'label_ids'])

            record = Record(
                token_ids=token_ids,
                text_type_ids=text_type_ids,
                position_ids=position_ids,
                label_ids=label_ids)
        else:
            Record = namedtuple('Record',
                                ['token_ids', 'text_type_ids', 'position_ids'])
            record = Record(
                token_ids=token_ids,
                text_type_ids=text_type_ids,
                position_ids=position_ids)

        return record


665 666
if __name__ == '__main__':
    pass