MKLDNNFcLayer.cpp 9.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "MKLDNNFcLayer.h"
T
tensor-tang 已提交
16
#include "paddle/utils/Logging.h"
T
tensor-tang 已提交
17
#include "paddle/utils/Stat.h"
T
tensor-tang 已提交
18

T
tensor-tang 已提交
19 20 21 22 23 24
using namespace mkldnn;  // NOLINT
typedef memory::format format;
typedef inner_product_forward fc_fwd;
typedef inner_product_backward_weights fc_bwdWgt;
typedef inner_product_backward_data fc_bwdData;

T
tensor-tang 已提交
25 26
namespace paddle {

27
REGISTER_LAYER(mkldnn_fc, MKLDNNFcLayer);
T
tensor-tang 已提交
28

29
bool MKLDNNFcLayer::init(const LayerMap& layerMap,
T
tensor-tang 已提交
30
                         const ParameterMap& parameterMap) {
31
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
T
tensor-tang 已提交
32 33 34
    return false;
  }

T
tensor-tang 已提交
35
  CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
T
tensor-tang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  CHECK_EQ(inputLayers_.size(), parameters_.size());
  CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet";

  // output size, cat not be changed
  oc_ = getSize();
  oh_ = 1;
  ow_ = 1;

  // input size can not change in FC
  iLayerSize_ = inputLayers_[0]->getSize();
  CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_);

  // create weight
  weight_ =
      std::unique_ptr<Weight>(new Weight(oc_, iLayerSize_, parameters_[0], 0));

  // create biases
  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
  }
  return true;
}

59
void MKLDNNFcLayer::convertWeightsFromPaddle() {
T
tensor-tang 已提交
60
  if (hasInitedWgt_) {
T
tensor-tang 已提交
61 62 63
    return;
  }

T
tensor-tang 已提交
64 65 66 67 68
  CHECK(wgtVal_) << "should have been initialized";
  bool hasNoSpatial_ = ih_ == 1 && iw_ == 1;
  auto targetDim = wgtVal_->getDims();
  auto srcFmt = hasNoSpatial_ ? memory::format::io : memory::format::ihwo;
  wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
T
tensor-tang 已提交
69 70 71
  hasInitedWgt_ = true;
}

72
void MKLDNNFcLayer::convertWeightsToPaddle() {
T
tensor-tang 已提交
73 74 75 76 77
  CHECK(wgtVal_) << "should have been initialized";
  bool hasNoSpatial_ = ih_ == 1 && iw_ == 1;
  auto targetDim = wgtVal_->getDims();
  auto dstFmt = hasNoSpatial_ ? memory::format::io : memory::format::ihwo;
  wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
T
tensor-tang 已提交
78 79
}

80
void MKLDNNFcLayer::reshape() {
81
  const Argument& input = getInput(0, getPrev(0)->getDeviceId());
T
tensor-tang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  int batchSize = input.getBatchSize();
  if (bs_ == batchSize) {
    return;
  }
  bs_ = batchSize;
  ih_ = input.getFrameHeight();
  iw_ = input.getFrameWidth();
  if (ih_ == 0) {
    ih_ = 1;
  }
  if (iw_ == 0) {
    iw_ = 1;
  }
  CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
  ic_ = iLayerSize_ / (ih_ * iw_);
  CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible";
  CHECK_EQ(size_t(oc_), getSize());
T
tensor-tang 已提交
99
  printSizeInfo();
T
tensor-tang 已提交
100 101 102 103 104

  // reset output
  output_.setFrameHeight(oh_);
  output_.setFrameWidth(ow_);
  resetOutput(bs_, oc_);
T
tensor-tang 已提交
105 106 107 108 109 110 111 112

  // reset mkldnn forward
  resetFwd();
  needResetBwd_ = true;

  convertWeightsFromPaddle();
}

113
void MKLDNNFcLayer::resetFwd() {
T
tensor-tang 已提交
114
  bool hasBias = biases_ && biases_->getW();
T
tensor-tang 已提交
115 116 117 118
  const MatrixPtr& wgt = weight_->getW();
  const MatrixPtr& bias = hasBias ? biases_->getW() : nullptr;
  const MatrixPtr& out = output_.value;

119 120
  if (prevIsMKLDNN()) {
    const MatrixPtr& in = getInputValue(0);
T
tensor-tang 已提交
121 122 123
    inVal_ = std::dynamic_pointer_cast<MKLDNNMatrix>(in);
    CHECK(inVal_) << "Input should be MKLDNNMatrix";
  } else {
124 125
    CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
    const MatrixPtr& in = getInputValue(0, CPU_DEVICE);
T
tensor-tang 已提交
126
    inVal_ = MKLDNNMatrix::create(
127
        in, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_);
T
tensor-tang 已提交
128
  }
129
  inVal_->downSpatial();
T
tensor-tang 已提交
130
  wgtVal_ = MKLDNNMatrix::create(
131 132
      wgt, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_);
  wgtVal_->downSpatial();
T
tensor-tang 已提交
133 134 135 136
  biasVal_ =
      hasBias ? MKLDNNMatrix::create(bias, {oc_}, format::x, engine_) : nullptr;
  outVal_ = MKLDNNMatrix::create(out, {bs_, oc_}, format::nc, engine_);

137
  // change original output value to mkldnn output value
T
tensor-tang 已提交
138
  output_.value = std::dynamic_pointer_cast<Matrix>(outVal_);
139 140 141 142 143 144 145 146 147 148 149 150 151
  if (!nextIsMKLDNN()) {
    Argument cpuOutput;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      if (outputOtherDevice_[i].deviceId == CPU_DEVICE) {
        cpuOutput = outputOtherDevice_[i];
      }
    }
    cpuOutput.setFrameHeight(output_.getFrameHeight());
    cpuOutput.setFrameWidth(output_.getFrameWidth());

    // fc cpu output value do not need convert
    cpuOutput.value = output_.value;
  }
T
tensor-tang 已提交
152

T
tensor-tang 已提交
153
  // create forward handle
T
tensor-tang 已提交
154
  prop_kind pk = prop_kind::forward;
T
tensor-tang 已提交
155 156 157 158 159 160 161 162
  fc_fwd::desc fwdDesc =
      hasBias ? fc_fwd::desc(pk,
                             inVal_->getMD(),
                             wgtVal_->getMD(),
                             biasVal_->getMD(),
                             outVal_->getMD())
              : fc_fwd::desc(
                    pk, inVal_->getMD(), wgtVal_->getMD(), outVal_->getMD());
T
tensor-tang 已提交
163
  fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
T
tensor-tang 已提交
164
  if (hasBias) {
T
tensor-tang 已提交
165 166 167 168
    fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *biasVal_, *outVal_));
  } else {
    fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *outVal_));
  }
169 170
  printValueFormatFlow();

T
tensor-tang 已提交
171 172 173 174
  pipelineFwd_.clear();
  pipelineFwd_.push_back(*fwd_);
}

175
void MKLDNNFcLayer::resetBwd() {
T
tensor-tang 已提交
176 177 178 179 180 181 182
  if (!needResetBwd_) {
    return;
  }
  needResetBwd_ = false;
  bool hasBias = biases_ && biases_->getWGrad();

  /// backward weight
T
tensor-tang 已提交
183 184 185 186
  CHECK(inVal_) << "Should have input value";
  const MatrixPtr& wgt = weight_->getWGrad();
  const MatrixPtr& bias = hasBias ? biases_->getWGrad() : nullptr;

T
tensor-tang 已提交
187
  // TODO(TJ): merge topdiffs
188 189 190 191 192 193 194 195 196 197 198 199
  if (nextIsMKLDNN()) {
    // can not directly cast outputgrad to mkldnnmatrix,
    // since each layer can not write the inputgrad to mkldnn inputgrad.
    // So just create from matrix with outputvalue format.
    const MatrixPtr& out = getOutput(MKLDNN_DEVICE).grad;
    outGrad_ = MKLDNNMatrix::create(out, outVal_->getPD());
  } else {
    const MatrixPtr& out = getOutput(CPU_DEVICE).grad;
    // fc do not need to convert from cpu device since output always nc
    // only need create from cpu device
    outGrad_ = MKLDNNMatrix::create(out, outVal_->getPD());
  }
T
tensor-tang 已提交
200

201 202
  wgtGrad_ = MKLDNNMatrix::create(wgt, wgtVal_->getPD());
  biasGrad_ = hasBias ? MKLDNNMatrix::create(bias, biasVal_->getPD()) : nullptr;
T
tensor-tang 已提交
203 204 205 206 207 208

  // create memory primitive desc
  fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward,
                                      inVal_->getMD(),
                                      wgtGrad_->getMD(),
                                      outGrad_->getMD());
T
tensor-tang 已提交
209
  fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
T
tensor-tang 已提交
210 211 212 213 214 215 216
  fc_bwdWgt::desc bwdWgtDesc =
      hasBias ? fc_bwdWgt::desc(inVal_->getMD(),
                                wgtGrad_->getMD(),
                                biasGrad_->getMD(),
                                outGrad_->getMD())
              : fc_bwdWgt::desc(
                    inVal_->getMD(), wgtGrad_->getMD(), outGrad_->getMD());
T
tensor-tang 已提交
217 218 219
  fc_bwdWgt::primitive_desc bwdWgtPD =
      fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD);

T
tensor-tang 已提交
220
  if (hasBias) {
T
tensor-tang 已提交
221 222 223 224 225 226 227 228 229
    bwdWgt_.reset(
        new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_, *biasGrad_));
  } else {
    bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_));
  }
  pipelineBwd_.clear();
  pipelineBwd_.push_back(*bwdWgt_);

  /// backward data
230 231 232 233 234 235
  if (prevIsMKLDNN()) {
    const MatrixPtr& in = getInputGrad(0, MKLDNN_DEVICE);
    if (in == nullptr) {
      return;
    }
    if (getInput(0, MKLDNN_DEVICE).getAllCount() > 1) {
T
tensor-tang 已提交
236
      // TODO(TJ): use outputMaps_ ways when merge topdiff done
237 238 239 240 241 242 243 244 245
    } else {
      inGrad_ = MKLDNNMatrix::create(in, inVal_->getPD());
    }
  } else {
    const MatrixPtr& in = getInputGrad(0, CPU_DEVICE);
    if (in == nullptr) {
      return;
    }
    if (getInput(0, CPU_DEVICE).getAllCount() > 1) {
T
tensor-tang 已提交
246
      // TODO(TJ): use outputMaps_ ways when merge topdiff done
247 248 249
    } else {
      inGrad_ = MKLDNNMatrix::create(in, inVal_->getPD());
    }
T
tensor-tang 已提交
250
  }
251

T
tensor-tang 已提交
252 253
  fc_bwdData::desc bwdDataDesc =
      fc_bwdData::desc(inVal_->getMD(), wgtGrad_->getMD(), outGrad_->getMD());
T
tensor-tang 已提交
254 255
  fc_bwdData::primitive_desc bwdDataPD =
      fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD);
T
tensor-tang 已提交
256

T
tensor-tang 已提交
257 258
  CHECK(wgtVal_) << "Should have weight memory";
  bwdData_.reset(new fc_bwdData(bwdDataPD, *outGrad_, *wgtVal_, *inGrad_));
259
  printGradFormatFlow();
T
tensor-tang 已提交
260
  pipelineBwd_.push_back(*bwdData_);
T
tensor-tang 已提交
261 262
}

263
void MKLDNNFcLayer::forward(PassType passType) {
T
tensor-tang 已提交
264 265
  Layer::forward(passType);
  reshape();
T
tensor-tang 已提交
266

T
tensor-tang 已提交
267 268
  {
    REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
269
    syncInputValue();
T
tensor-tang 已提交
270 271 272

    // just submit forward pipeline
    stream_->submit(pipelineFwd_);
T
tensor-tang 已提交
273
  }
T
tensor-tang 已提交
274

T
tensor-tang 已提交
275 276 277 278 279 280
  /* activation */ {
    REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
    forwardActivation();
  }
}

281
void MKLDNNFcLayer::backward(const UpdateCallback& callback) {
T
tensor-tang 已提交
282 283 284 285 286 287 288
  /* Do derivation */ {
    REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
    backwardActivation();
  }

  {
    REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
T
tensor-tang 已提交
289 290
    resetBwd();

291
    syncOutputGrad();
T
tensor-tang 已提交
292 293
    // just sumbmit backward pipeline
    stream_->submit(pipelineBwd_);
T
tensor-tang 已提交
294 295 296 297 298
  }

  {
    REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
    weight_->getParameterPtr()->incUpdate(callback);
T
tensor-tang 已提交
299
    if (biases_ && biases_->getWGrad()) {
T
tensor-tang 已提交
300 301 302
      biases_->getParameterPtr()->incUpdate(callback);
    }
  }
T
tensor-tang 已提交
303
}
T
tensor-tang 已提交
304
}  // namespace paddle