Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
48d87e5e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
48d87e5e
编写于
8月 23, 2017
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
pass test, support input CPU device
上级
4eecd0c2
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
258 addition
and
92 deletion
+258
-92
paddle/gserver/layers/Layer.h
paddle/gserver/layers/Layer.h
+22
-13
paddle/gserver/layers/MKLDNNFcLayer.cpp
paddle/gserver/layers/MKLDNNFcLayer.cpp
+67
-41
paddle/gserver/layers/MKLDNNLayer.h
paddle/gserver/layers/MKLDNNLayer.h
+69
-12
paddle/math/Allocator.h
paddle/math/Allocator.h
+6
-0
paddle/math/MKLDNNMatrix.cpp
paddle/math/MKLDNNMatrix.cpp
+58
-13
paddle/math/MKLDNNMatrix.h
paddle/math/MKLDNNMatrix.h
+36
-13
未找到文件。
paddle/gserver/layers/Layer.h
浏览文件 @
48d87e5e
...
...
@@ -82,6 +82,7 @@ protected:
Argument
output_
;
/// Several outputs stored on different devices, used in 'parallel_nn' case,
/// and record them by deviceId_.
/// Also used in 'use_mkldnn' case.
std
::
vector
<
Argument
>
outputOtherDevice_
;
/// If there are several outputs, map them by each name.
std
::
map
<
std
::
string
,
Argument
*>
outputMap_
;
...
...
@@ -177,6 +178,13 @@ protected:
return
inputLayer
.
getOutput
(
deviceId_
);
}
/**
* Get the argument of input layer with deviceId.
*/
const
Argument
&
getInput
(
size_t
inputIndex
,
int
deviceId
)
const
{
return
inputLayers_
[
inputIndex
]
->
getOutput
(
deviceId
);
}
/**
* Get the forward-input value.
*/
...
...
@@ -191,6 +199,13 @@ protected:
return
inputLayer
.
getOutput
(
deviceId_
).
value
;
}
/**
* Get the forward-input value with deviceId.
*/
const
MatrixPtr
&
getInputValue
(
int
inputIndex
,
int
deviceId
)
{
return
inputLayers_
[
inputIndex
]
->
getOutput
(
deviceId
).
value
;
}
/**
* Get the forward-input grad.
*/
...
...
@@ -205,6 +220,13 @@ protected:
return
inputLayer
.
getOutput
(
deviceId_
).
grad
;
}
/**
* Get the forward-input grad.
*/
const
MatrixPtr
&
getInputGrad
(
int
inputIndex
,
int
deviceId
)
{
return
inputLayers_
[
inputIndex
]
->
getOutput
(
deviceId
).
grad
;
}
/**
* Get the forward-input label.
*/
...
...
@@ -326,19 +348,6 @@ public:
if
(
deviceId
==
getDeviceId
())
{
return
output_
;
}
else
{
bool
CPU2MKLDNN
=
getDeviceId
()
==
CPU_DEVICE
&&
deviceId
==
MKLDNN_DEVICE
;
bool
MKLDNN2CPU
=
getDeviceId
()
==
MKLDNN_DEVICE
&&
deviceId
==
CPU_DEVICE
;
if
(
CPU2MKLDNN
)
{
// TODO: do something
return
output_
;
}
else
if
(
MKLDNN2CPU
)
{
// TODO: do something
return
output_
;
}
// TODO: handle mkldnn device or add mkldnn device to other
for
(
size_t
i
=
0
;
i
<
outputOtherDevice_
.
size
();
i
++
)
{
if
(
outputOtherDevice_
[
i
].
deviceId
==
deviceId
)
{
return
outputOtherDevice_
[
i
];
...
...
paddle/gserver/layers/MKLDNNFcLayer.cpp
浏览文件 @
48d87e5e
...
...
@@ -97,7 +97,7 @@ void MKLDNNFcLayer::convertWeightsToPaddle() {
}
void
MKLDNNFcLayer
::
reshape
()
{
const
Argument
&
input
=
getInput
(
0
);
const
Argument
&
input
=
getInput
(
0
,
getPrev
(
0
)
->
getDeviceId
()
);
int
batchSize
=
input
.
getBatchSize
();
if
(
bs_
==
batchSize
)
{
return
;
...
...
@@ -135,35 +135,43 @@ void MKLDNNFcLayer::reshape() {
void
MKLDNNFcLayer
::
resetFwd
()
{
bool
hasBias
=
biases_
&&
biases_
->
getW
();
const
MatrixPtr
&
in
=
getInputValue
(
0
);
const
MatrixPtr
&
wgt
=
weight_
->
getW
();
const
MatrixPtr
&
bias
=
hasBias
?
biases_
->
getW
()
:
nullptr
;
const
MatrixPtr
&
out
=
output_
.
value
;
if
(
getPrev
(
0
)
->
getDeviceId
()
==
MKLDNN_DEVICE
)
{
if
(
prevIsMKLDNN
())
{
const
MatrixPtr
&
in
=
getInputValue
(
0
);
inVal_
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
in
);
CHECK
(
inVal_
)
<<
"Input should be MKLDNNMatrix"
;
// TODO: change input nchw to nc if available
// inVal_->downSpatial()
}
else
{
CHECK_EQ
(
getPrev
(
0
)
->
getDeviceId
(),
CPU_DEVICE
)
<<
"Only support CPU yet"
;
const
MatrixPtr
&
in
=
getInputValue
(
0
,
CPU_DEVICE
);
inVal_
=
MKLDNNMatrix
::
create
(
in
,
hasSpatial_
?
memory
::
dims
{
bs_
,
ic_
,
ih_
,
iw_
}
:
memory
::
dims
{
bs_
,
ic_
},
hasSpatial_
?
format
::
nchw
:
format
::
nc
,
engine_
);
in
,
memory
::
dims
{
bs_
,
ic_
,
ih_
,
iw_
},
format
::
nchw
,
engine_
);
}
inVal_
->
downSpatial
();
wgtVal_
=
MKLDNNMatrix
::
create
(
wgt
,
hasSpatial_
?
memory
::
dims
{
oc_
,
ic_
,
ih_
,
iw_
}
:
memory
::
dims
{
oc_
,
ic_
},
hasSpatial_
?
format
::
oihw
:
format
::
oi
,
engine_
);
wgt
,
memory
::
dims
{
oc_
,
ic_
,
ih_
,
iw_
},
format
::
oihw
,
engine_
);
wgtVal_
->
downSpatial
();
biasVal_
=
hasBias
?
MKLDNNMatrix
::
create
(
bias
,
{
oc_
},
format
::
x
,
engine_
)
:
nullptr
;
outVal_
=
MKLDNNMatrix
::
create
(
out
,
{
bs_
,
oc_
},
format
::
nc
,
engine_
);
// change original output
to mkldnn output
// change original output
value to mkldnn output value
output_
.
value
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
outVal_
);
if
(
!
nextIsMKLDNN
())
{
Argument
cpuOutput
;
for
(
size_t
i
=
0
;
i
<
outputOtherDevice_
.
size
();
i
++
)
{
if
(
outputOtherDevice_
[
i
].
deviceId
==
CPU_DEVICE
)
{
cpuOutput
=
outputOtherDevice_
[
i
];
}
}
cpuOutput
.
setFrameHeight
(
output_
.
getFrameHeight
());
cpuOutput
.
setFrameWidth
(
output_
.
getFrameWidth
());
// fc cpu output value do not need convert
cpuOutput
.
value
=
output_
.
value
;
}
// create forward handle
prop_kind
pk
=
prop_kind
::
forward
;
...
...
@@ -176,12 +184,13 @@ void MKLDNNFcLayer::resetFwd() {
:
fc_fwd
::
desc
(
pk
,
inVal_
->
getMD
(),
wgtVal_
->
getMD
(),
outVal_
->
getMD
());
fc_fwd
::
primitive_desc
fwdPD
=
fc_fwd
::
primitive_desc
(
fwdDesc
,
engine_
);
if
(
hasBias
)
{
fwd_
.
reset
(
new
fc_fwd
(
fwdPD
,
*
inVal_
,
*
wgtVal_
,
*
biasVal_
,
*
outVal_
));
}
else
{
fwd_
.
reset
(
new
fc_fwd
(
fwdPD
,
*
inVal_
,
*
wgtVal_
,
*
outVal_
));
}
printValueFormatFlow
();
pipelineFwd_
.
clear
();
pipelineFwd_
.
push_back
(
*
fwd_
);
}
...
...
@@ -197,17 +206,24 @@ void MKLDNNFcLayer::resetBwd() {
CHECK
(
inVal_
)
<<
"Should have input value"
;
const
MatrixPtr
&
wgt
=
weight_
->
getWGrad
();
const
MatrixPtr
&
bias
=
hasBias
?
biases_
->
getWGrad
()
:
nullptr
;
const
MatrixPtr
&
out
=
output_
.
grad
;
wgtGrad_
=
MKLDNNMatrix
::
create
(
wgt
,
wgtVal_
->
getDims
(),
wgtVal_
->
getFormat
(),
engine_
);
biasGrad_
=
hasBias
?
MKLDNNMatrix
::
create
(
bias
,
{
oc_
},
format
::
x
,
engine_
)
:
nullptr
;
if
(
nextIsMKLDNN
())
{
// can not directly cast outputgrad to mkldnnmatrix,
// since each layer can not write the inputgrad to mkldnn inputgrad.
// So just create from matrix with outputvalue format.
const
MatrixPtr
&
out
=
getOutput
(
MKLDNN_DEVICE
).
grad
;
outGrad_
=
MKLDNNMatrix
::
create
(
out
,
outVal_
->
getPD
());
// TODO: maybe need merge topdiffs
}
else
{
// TODO: merge topdiffs
const
MatrixPtr
&
out
=
getOutput
(
CPU_DEVICE
).
grad
;
// fc do not need to convert from cpu device since output always nc
// only need create from cpu device
outGrad_
=
MKLDNNMatrix
::
create
(
out
,
outVal_
->
getPD
());
}
outGrad_
=
MKLDNNMatrix
::
create
(
out
,
{
bs_
,
oc_
},
format
::
nc
,
engine_
);
// change original output to mkldnn output
// TODO: right?
output_
.
grad
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
outGrad_
);
wgtGrad_
=
MKLDNNMatrix
::
create
(
wgt
,
wgtVal_
->
getPD
());
biasGrad_
=
hasBias
?
MKLDNNMatrix
::
create
(
bias
,
biasVal_
->
getPD
())
:
nullptr
;
// create memory primitive desc
fc_fwd
::
desc
fwdDesc
=
fc_fwd
::
desc
(
prop_kind
::
forward
,
...
...
@@ -235,21 +251,38 @@ void MKLDNNFcLayer::resetBwd() {
pipelineBwd_
.
push_back
(
*
bwdWgt_
);
/// backward data
const
MatrixPtr
&
in
=
getInputGrad
(
0
);
if
(
in
==
nullptr
)
{
return
;
if
(
prevIsMKLDNN
())
{
const
MatrixPtr
&
in
=
getInputGrad
(
0
,
MKLDNN_DEVICE
);
if
(
in
==
nullptr
)
{
return
;
}
if
(
getInput
(
0
,
MKLDNN_DEVICE
).
getAllCount
()
>
1
)
{
// TODO: many mkldnn bots
// add sum handle
}
else
{
inGrad_
=
MKLDNNMatrix
::
create
(
in
,
inVal_
->
getPD
());
}
}
else
{
const
MatrixPtr
&
in
=
getInputGrad
(
0
,
CPU_DEVICE
);
if
(
in
==
nullptr
)
{
return
;
}
if
(
getInput
(
0
,
CPU_DEVICE
).
getAllCount
()
>
1
)
{
// TODO: many bots
// add sum handle
}
else
{
inGrad_
=
MKLDNNMatrix
::
create
(
in
,
inVal_
->
getPD
());
}
}
fc_bwdData
::
desc
bwdDataDesc
=
fc_bwdData
::
desc
(
inVal_
->
getMD
(),
wgtGrad_
->
getMD
(),
outGrad_
->
getMD
());
fc_bwdData
::
primitive_desc
bwdDataPD
=
fc_bwdData
::
primitive_desc
(
bwdDataDesc
,
engine_
,
fwdPD
);
// TODO: check right, just from ingrad?
inGrad_
=
MKLDNNMatrix
::
create
(
in
,
inVal_
->
getDims
(),
inVal_
->
getFormat
(),
engine_
);
CHECK
(
wgtVal_
)
<<
"Should have weight memory"
;
bwdData_
.
reset
(
new
fc_bwdData
(
bwdDataPD
,
*
outGrad_
,
*
wgtVal_
,
*
inGrad_
));
printGradFormatFlow
();
pipelineBwd_
.
push_back
(
*
bwdData_
);
}
...
...
@@ -259,11 +292,7 @@ void MKLDNNFcLayer::forward(PassType passType) {
{
REGISTER_TIMER_INFO
(
"mkldnn_FwdTimer"
,
getName
().
c_str
());
// update input data
// since it might be changed if this is after data layer
real
*
iData
=
getInputValue
(
0
)
->
getData
();
inVal_
->
updateData
(
iData
);
syncInputValue
();
// just submit forward pipeline
stream_
->
submit
(
pipelineFwd_
);
...
...
@@ -285,10 +314,7 @@ void MKLDNNFcLayer::backward(const UpdateCallback& callback) {
REGISTER_TIMER_INFO
(
"mkldnn_bwdTimer"
,
getName
().
c_str
());
resetBwd
();
// update diff
real
*
oDiff
=
getOutputGrad
()
->
getData
();
outGrad_
->
updateData
(
oDiff
);
syncOutputGrad
();
// just sumbmit backward pipeline
stream_
->
submit
(
pipelineBwd_
);
}
...
...
paddle/gserver/layers/MKLDNNLayer.h
浏览文件 @
48d87e5e
...
...
@@ -125,23 +125,80 @@ public:
<<
", oh: "
<<
oh_
<<
", ow: "
<<
ow_
;
}
/
/ TODO(TJ): move to MkldnnMatrix
// create memory desc
inline
mkldnn
::
memory
::
desc
createMD
(
mkldnn
::
memory
::
dims
dims
,
mkldnn
::
memory
::
format
fmt
,
mkldnn
::
memory
::
data_type
type
=
mkldnn
::
memory
::
data_type
::
f32
)
{
// TODO(TJ): isFmtSuppoted(fmt)
return
mkldnn
::
memory
::
desc
(
dims
,
type
,
fmt
);
/
**
* Print the mkldnn memory format flow of value
*/
virtual
void
printValueFormatFlow
()
{
if
(
inVal_
&&
outVal_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
"value format flow --- "
<<
inVal_
->
getFormat
()
<<
" >>> "
<<
outVal_
->
getFormat
();
}
}
void
resetMKLDNNOutput
(
size_t
height
,
size_t
width
)
{
Layer
::
resetOutput
(
height
,
width
);
// get valu and grad, use mkldnn matrix instaed
// output_.value;
/**
* Print the mkldnn memory format flow of grad
*/
virtual
void
printGradFormatFlow
()
{
if
(
inGrad_
&&
outGrad_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
"grad format flow --- "
<<
inGrad_
->
getFormat
()
<<
" <<< "
<<
outGrad_
->
getFormat
();
}
}
protected:
/**
* If next layer only has MKLDNN type.
* Otherwise, only support otherdevice CPU device.
*/
bool
nextIsMKLDNN
()
{
for
(
size_t
i
=
0
;
i
<
outputOtherDevice_
.
size
();
i
++
)
{
CHECK_EQ
(
outputOtherDevice_
[
i
].
deviceId
,
CPU_DEVICE
)
<<
"Only support other device is CPU yet"
;
}
return
outputOtherDevice_
.
size
()
==
0
;
}
/**
* Is previous layer MKLDNN type.
* Otherwise, only support otherdevice CPU device.
*/
bool
prevIsMKLDNN
(
int
index
=
0
)
{
int
prevDevice
=
getPrev
(
index
)
->
getDeviceId
();
if
(
prevDevice
==
MKLDNN_DEVICE
)
{
return
true
;
}
else
{
// do not support GPU yet
CHECK_EQ
(
prevDevice
,
CPU_DEVICE
)
<<
"Only support CPU yet"
;
return
false
;
}
}
/**
* Sync input value data
*/
void
syncInputValue
()
{
if
(
prevIsMKLDNN
())
{
return
;
}
real
*
iData
=
getInputValue
(
0
,
CPU_DEVICE
)
->
getData
();
// update input data
// since it might be changed if this is after data layer
inVal_
->
updateData
(
iData
);
}
/**
* Sync output grad data
*/
void
syncOutputGrad
()
{
if
(
nextIsMKLDNN
())
{
return
;
}
// update diff
real
*
oDiff
=
getOutput
(
CPU_DEVICE
).
grad
->
getData
();
outGrad_
->
updateData
(
oDiff
);
}
/**
* Set deviceId of this layer.
*/
...
...
paddle/math/Allocator.h
浏览文件 @
48d87e5e
...
...
@@ -48,7 +48,13 @@ public:
*/
virtual
void
*
alloc
(
size_t
size
)
{
void
*
ptr
;
#ifdef PADDLE_USE_MKLDNN
// refer to https://github.com/01org/mkl-dnn/blob/master/include/mkldnn.hpp
// memory alignment
CHECK_EQ
(
posix_memalign
(
&
ptr
,
4096ul
,
size
),
0
);
#else
CHECK_EQ
(
posix_memalign
(
&
ptr
,
32ul
,
size
),
0
);
#endif
CHECK
(
ptr
)
<<
"Fail to allocate CPU memory: size="
<<
size
;
return
ptr
;
}
...
...
paddle/math/MKLDNNMatrix.cpp
浏览文件 @
48d87e5e
...
...
@@ -18,29 +18,74 @@ using namespace mkldnn; // NOLINT
namespace
paddle
{
MKLDNNMatrixPtr
MKLDNNMatrix
::
create
(
const
MatrixPtr
&
m
,
memory
::
dims
dims
,
memory
::
format
fmt
,
engine
&
eg
,
mkldnn
::
memory
::
data_type
dtype
)
{
CpuMatrixPtr
cpuM
=
std
::
dynamic_pointer_cast
<
CpuMatrix
>
(
m
);
CHECK
(
cpuM
)
<<
"Only support create from CPU matrix yet"
;
size_t
ndims
=
dims
.
size
();
MKLDNNMatrixPtr
MKLDNNMatrix
::
create
(
MatrixPtr
m
,
memory
::
primitive_desc
pd
)
{
memory
::
desc
md
=
pd
.
desc
();
size_t
ndims
=
md
.
data
.
ndims
;
int
*
dims
=
md
.
data
.
dims
;
CHECK
(
ndims
>
0
)
<<
"Input dims should not be empty"
;
size_t
cnt
=
1
;
size_t
cnt
s
=
1
;
for
(
size_t
i
=
0
;
i
<
ndims
;
++
i
)
{
cnt
*=
dims
[
i
];
cnt
s
*=
dims
[
i
];
}
CHECK_EQ
(
cnt
,
m
->
getElementCnt
())
<<
"Count size does not match"
;
if
(
m
==
nullptr
)
{
size_t
height
=
dims
[
0
];
size_t
width
=
cnts
/
dims
[
0
];
// LOG(INFO) << height << "," << width;
m
=
Matrix
::
create
(
height
,
width
,
false
,
false
);
}
CHECK
(
m
)
<<
" Matrix should not be empty"
;
CpuMatrixPtr
cpuMatrix
=
std
::
dynamic_pointer_cast
<
CpuMatrix
>
(
m
);
CHECK
(
cpuMatrix
)
<<
"Only support create from CPU matrix yet"
;
CHECK_EQ
(
cnts
,
m
->
getElementCnt
())
<<
"Count size does not match"
;
size_t
width
=
m
->
getWidth
();
size_t
height
=
m
->
getHeight
();
real
*
data
=
m
->
getData
();
return
std
::
make_shared
<
MKLDNNMatrix
>
(
data
,
height
,
width
,
pd
);
}
MKLDNNMatrixPtr
MKLDNNMatrix
::
create
(
MatrixPtr
m
,
memory
::
dims
dims
,
memory
::
format
fmt
,
engine
&
eg
,
mkldnn
::
memory
::
data_type
dtype
)
{
memory
::
desc
md
=
memory
::
desc
(
dims
,
dtype
,
fmt
);
memory
::
primitive_desc
pd
=
memory
::
primitive_desc
(
md
,
eg
);
return
std
::
make_shared
<
MKLDNNMatrix
>
(
data
,
height
,
width
,
pd
);
return
create
(
m
,
pd
);
}
void
MKLDNNMatrix
::
downSpatial
()
{
int
fmt
=
getFormat
();
if
(
!
(
fmt
==
memory
::
format
::
nchw
||
fmt
==
memory
::
format
::
oihw
))
{
// only support nchw and oihw yet, later can support more like nhwc, ihwo
return
;
}
memory
::
dims
srcDims
=
getDims
();
const
int
H
=
2
,
W
=
3
;
if
(
srcDims
[
H
]
!=
1
||
srcDims
[
W
]
!=
1
)
{
// can not down spatial
return
;
}
memory
::
dims
dstDims
=
memory
::
dims
{
srcDims
[
0
],
srcDims
[
1
]};
memory
::
format
dstFmt
;
switch
(
fmt
)
{
case
memory
::
format
::
nchw
:
dstFmt
=
memory
::
format
::
nc
;
break
;
case
memory
::
format
::
oihw
:
dstFmt
=
memory
::
format
::
oi
;
break
;
default:
LOG
(
FATAL
)
<<
"unsupported format"
;
}
memory
::
desc
md
=
memory
::
desc
(
dstDims
,
getDtype
(),
dstFmt
);
memory
::
primitive_desc
pd
=
memory
::
primitive_desc
(
md
,
getEngine
());
void
*
data
=
getData
();
memory
(
pd
,
data
);
}
}
// namespace paddle
paddle/math/MKLDNNMatrix.h
浏览文件 @
48d87e5e
...
...
@@ -39,20 +39,37 @@ public:
mkldnn
::
memory
::
primitive_desc
pd
)
:
CpuMatrix
(
data
,
height
,
width
,
false
),
mkldnn
::
memory
(
pd
,
data
)
{}
MKLDNNMatrix
(
size_t
height
,
size_t
width
,
mkldnn
::
memory
::
primitive_desc
pd
)
:
CpuMatrix
(
height
,
width
,
false
),
mkldnn
::
memory
(
pd
)
{
set_data_handle
(
CpuMatrix
::
getData
());
}
~
MKLDNNMatrix
()
{}
/**
* Create MKLDNNMatrix from a MatrixPtr and memory primitive_desc
*/
static
MKLDNNMatrixPtr
create
(
MatrixPtr
m
,
mkldnn
::
memory
::
primitive_desc
pd
);
/**
* Create MKLDNNMatrix from a MatrixPtr and memory details info
*/
static
MKLDNNMatrixPtr
create
(
const
MatrixPtr
&
m
,
MatrixPtr
m
,
mkldnn
::
memory
::
dims
dims
,
mkldnn
::
memory
::
format
fmt
,
mkldnn
::
engine
&
eg
,
mkldnn
::
memory
::
data_type
dtype
=
mkldnn
::
memory
::
data_type
::
f32
);
public:
/**
* Dimensionality reduction.
* Change format "nchw --> nc" or "oihw --> oi" if the h and w are both 1
*/
void
downSpatial
();
/**
* Update the memory data handle.
* Caution: This will not check the buffer size of the data,
* it should be coverd by user.
*/
void
updateData
(
void
*
data
)
{
set_data_handle
(
data
);
}
/**
* Get primitive descriptor.
*/
...
...
@@ -64,12 +81,13 @@ public:
mkldnn
::
memory
::
desc
getMD
()
{
return
getPD
().
desc
();
}
/**
* Get dims.
* Get dim
ension
s.
*/
mkldnn
::
memory
::
dims
getDims
()
{
mkldnn
::
memory
::
desc
md
=
getMD
();
const
int
*
src
=
md
.
data
.
dims
;
int
ndims
=
md
.
data
.
ndims
;
mkldnn
::
memory
::
dims
dst
;
int
*
src
=
getMD
().
data
.
dims
;
int
ndims
=
getMD
().
data
.
ndims
;
dst
.
resize
(
ndims
);
for
(
int
i
=
0
;
i
<
ndims
;
++
i
)
{
dst
[
i
]
=
src
[
i
];
...
...
@@ -85,11 +103,16 @@ public:
}
/**
* Update the memory data handle.
* Caution: This will not check the buffer size of the data,
* it should be coverd by user.
* Get memory data type.
*/
void
updateData
(
void
*
data
)
{
set_data_handle
(
data
);
}
mkldnn
::
memory
::
data_type
getDtype
()
{
return
(
mkldnn
::
memory
::
data_type
)(
getMD
().
data
.
data_type
);
}
/**
* Get engine.
*/
mkldnn
::
engine
getEngine
()
{
return
getPD
().
get_engine
();
}
};
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录