MKLDNNFcLayer.cpp 10.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "MKLDNNFcLayer.h"
T
tensor-tang 已提交
16
#include "paddle/utils/Logging.h"
T
tensor-tang 已提交
17
#include "paddle/utils/Stat.h"
T
tensor-tang 已提交
18

T
tensor-tang 已提交
19 20 21 22 23 24
using namespace mkldnn;  // NOLINT
typedef memory::format format;
typedef inner_product_forward fc_fwd;
typedef inner_product_backward_weights fc_bwdWgt;
typedef inner_product_backward_data fc_bwdData;

T
tensor-tang 已提交
25 26
namespace paddle {

27
REGISTER_LAYER(mkldnn_fc, MKLDNNFcLayer);
T
tensor-tang 已提交
28

29
bool MKLDNNFcLayer::init(const LayerMap& layerMap,
T
tensor-tang 已提交
30
                         const ParameterMap& parameterMap) {
31
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
T
tensor-tang 已提交
32 33 34
    return false;
  }

T
tensor-tang 已提交
35
  CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
T
tensor-tang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  CHECK_EQ(inputLayers_.size(), parameters_.size());
  CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet";

  // output size, cat not be changed
  oc_ = getSize();
  oh_ = 1;
  ow_ = 1;

  // input size can not change in FC
  iLayerSize_ = inputLayers_[0]->getSize();
  CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_);

  // create weight
  weight_ =
      std::unique_ptr<Weight>(new Weight(oc_, iLayerSize_, parameters_[0], 0));

  // create biases
  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
  }
  return true;
}

59
void MKLDNNFcLayer::convertWeightsFromPaddle() {
T
tensor-tang 已提交
60
  if (hasInitedWgt_) {
T
tensor-tang 已提交
61 62 63
    return;
  }

T
tensor-tang 已提交
64 65 66 67
  // TODO(TJ): dst format should get from wgtVal_
  int dstFmt = PARAM_FORMAT_MKLDNN_OI;
  int srcFmt = weight_->getParameterPtr()->getHeaderFormat();
  if (srcFmt == dstFmt) {
T
tensor-tang 已提交
68 69 70
    return;
  }

T
tensor-tang 已提交
71 72 73 74
  // The weight_ is transposed from initial paddle weight
  MatrixPtr paddleWgt = Matrix::create(
      weight_->getW()->getData(), iLayerSize_, oc_, false, false);

T
tensor-tang 已提交
75
  // TODO(TJ): remove this print when do not need differ weights
T
tensor-tang 已提交
76 77
  std::ostringstream ostr;
  paddleWgt->print(ostr);
T
tensor-tang 已提交
78
  VLOG(MKLDNN_ALL) << "Initial Weight from paddle: " << std::endl << ostr.str();
T
tensor-tang 已提交
79

T
tensor-tang 已提交
80
  // The mkldnn weight is transposed from initial paddle matrix
T
tensor-tang 已提交
81 82 83
  MatrixPtr paddleWgtT;
  paddleWgt->transpose(paddleWgtT, true);
  weight_->getW()->copyFrom(*paddleWgtT);
T
tensor-tang 已提交
84
  weight_->getParameterPtr()->setHeaderFormat(dstFmt);
T
tensor-tang 已提交
85 86 87
  hasInitedWgt_ = true;
}

88
void MKLDNNFcLayer::convertWeightsToPaddle() {
T
tensor-tang 已提交
89 90 91 92 93 94 95 96
  MatrixPtr dnnWgt = weight_->getW();
  MatrixPtr paddleWgt;
  dnnWgt->transpose(paddleWgt, true);

  // copy paddle weight and override on weight_
  MatrixPtr dnnWgtT = Matrix::create(
      dnnWgt->getData(), dnnWgt->getWidth(), dnnWgt->getHeight(), false, false);
  dnnWgtT->copyFrom(*paddleWgt);
T
tensor-tang 已提交
97 98
}

99
void MKLDNNFcLayer::reshape() {
100
  const Argument& input = getInput(0, getPrev(0)->getDeviceId());
T
tensor-tang 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  int batchSize = input.getBatchSize();
  if (bs_ == batchSize) {
    return;
  }
  bs_ = batchSize;
  ih_ = input.getFrameHeight();
  iw_ = input.getFrameWidth();
  if (ih_ == 0) {
    ih_ = 1;
  }
  if (iw_ == 0) {
    iw_ = 1;
  }
  CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
  ic_ = iLayerSize_ / (ih_ * iw_);
  CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible";
  CHECK_EQ(size_t(oc_), getSize());
T
tensor-tang 已提交
118
  printSizeInfo();
T
tensor-tang 已提交
119 120 121 122 123

  // reset output
  output_.setFrameHeight(oh_);
  output_.setFrameWidth(ow_);
  resetOutput(bs_, oc_);
T
tensor-tang 已提交
124 125 126 127 128 129 130 131

  // reset mkldnn forward
  resetFwd();
  needResetBwd_ = true;

  convertWeightsFromPaddle();
}

132
void MKLDNNFcLayer::resetFwd() {
T
tensor-tang 已提交
133
  bool hasBias = biases_ && biases_->getW();
T
tensor-tang 已提交
134 135 136 137
  const MatrixPtr& wgt = weight_->getW();
  const MatrixPtr& bias = hasBias ? biases_->getW() : nullptr;
  const MatrixPtr& out = output_.value;

138 139
  if (prevIsMKLDNN()) {
    const MatrixPtr& in = getInputValue(0);
T
tensor-tang 已提交
140 141 142
    inVal_ = std::dynamic_pointer_cast<MKLDNNMatrix>(in);
    CHECK(inVal_) << "Input should be MKLDNNMatrix";
  } else {
143 144
    CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
    const MatrixPtr& in = getInputValue(0, CPU_DEVICE);
T
tensor-tang 已提交
145
    inVal_ = MKLDNNMatrix::create(
146
        in, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_);
T
tensor-tang 已提交
147
  }
148
  inVal_->downSpatial();
T
tensor-tang 已提交
149
  wgtVal_ = MKLDNNMatrix::create(
150 151
      wgt, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_);
  wgtVal_->downSpatial();
T
tensor-tang 已提交
152 153 154 155
  biasVal_ =
      hasBias ? MKLDNNMatrix::create(bias, {oc_}, format::x, engine_) : nullptr;
  outVal_ = MKLDNNMatrix::create(out, {bs_, oc_}, format::nc, engine_);

156
  // change original output value to mkldnn output value
T
tensor-tang 已提交
157
  output_.value = std::dynamic_pointer_cast<Matrix>(outVal_);
158 159 160 161 162 163 164 165 166 167 168 169 170
  if (!nextIsMKLDNN()) {
    Argument cpuOutput;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      if (outputOtherDevice_[i].deviceId == CPU_DEVICE) {
        cpuOutput = outputOtherDevice_[i];
      }
    }
    cpuOutput.setFrameHeight(output_.getFrameHeight());
    cpuOutput.setFrameWidth(output_.getFrameWidth());

    // fc cpu output value do not need convert
    cpuOutput.value = output_.value;
  }
T
tensor-tang 已提交
171

T
tensor-tang 已提交
172
  // create forward handle
T
tensor-tang 已提交
173
  prop_kind pk = prop_kind::forward;
T
tensor-tang 已提交
174 175 176 177 178 179 180 181
  fc_fwd::desc fwdDesc =
      hasBias ? fc_fwd::desc(pk,
                             inVal_->getMD(),
                             wgtVal_->getMD(),
                             biasVal_->getMD(),
                             outVal_->getMD())
              : fc_fwd::desc(
                    pk, inVal_->getMD(), wgtVal_->getMD(), outVal_->getMD());
T
tensor-tang 已提交
182
  fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
T
tensor-tang 已提交
183
  if (hasBias) {
T
tensor-tang 已提交
184 185 186 187
    fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *biasVal_, *outVal_));
  } else {
    fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *outVal_));
  }
188 189
  printValueFormatFlow();

T
tensor-tang 已提交
190 191 192 193
  pipelineFwd_.clear();
  pipelineFwd_.push_back(*fwd_);
}

194
void MKLDNNFcLayer::resetBwd() {
T
tensor-tang 已提交
195 196 197 198 199 200 201
  if (!needResetBwd_) {
    return;
  }
  needResetBwd_ = false;
  bool hasBias = biases_ && biases_->getWGrad();

  /// backward weight
T
tensor-tang 已提交
202 203 204 205
  CHECK(inVal_) << "Should have input value";
  const MatrixPtr& wgt = weight_->getWGrad();
  const MatrixPtr& bias = hasBias ? biases_->getWGrad() : nullptr;

206 207 208 209 210 211 212 213 214 215 216 217 218 219
  if (nextIsMKLDNN()) {
    // can not directly cast outputgrad to mkldnnmatrix,
    // since each layer can not write the inputgrad to mkldnn inputgrad.
    // So just create from matrix with outputvalue format.
    const MatrixPtr& out = getOutput(MKLDNN_DEVICE).grad;
    outGrad_ = MKLDNNMatrix::create(out, outVal_->getPD());
    // TODO: maybe need merge topdiffs
  } else {
    // TODO: merge topdiffs
    const MatrixPtr& out = getOutput(CPU_DEVICE).grad;
    // fc do not need to convert from cpu device since output always nc
    // only need create from cpu device
    outGrad_ = MKLDNNMatrix::create(out, outVal_->getPD());
  }
T
tensor-tang 已提交
220

221 222
  wgtGrad_ = MKLDNNMatrix::create(wgt, wgtVal_->getPD());
  biasGrad_ = hasBias ? MKLDNNMatrix::create(bias, biasVal_->getPD()) : nullptr;
T
tensor-tang 已提交
223 224 225 226 227 228

  // create memory primitive desc
  fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward,
                                      inVal_->getMD(),
                                      wgtGrad_->getMD(),
                                      outGrad_->getMD());
T
tensor-tang 已提交
229
  fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
T
tensor-tang 已提交
230 231 232 233 234 235 236
  fc_bwdWgt::desc bwdWgtDesc =
      hasBias ? fc_bwdWgt::desc(inVal_->getMD(),
                                wgtGrad_->getMD(),
                                biasGrad_->getMD(),
                                outGrad_->getMD())
              : fc_bwdWgt::desc(
                    inVal_->getMD(), wgtGrad_->getMD(), outGrad_->getMD());
T
tensor-tang 已提交
237 238 239
  fc_bwdWgt::primitive_desc bwdWgtPD =
      fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD);

T
tensor-tang 已提交
240
  if (hasBias) {
T
tensor-tang 已提交
241 242 243 244 245 246 247 248 249
    bwdWgt_.reset(
        new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_, *biasGrad_));
  } else {
    bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_));
  }
  pipelineBwd_.clear();
  pipelineBwd_.push_back(*bwdWgt_);

  /// backward data
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  if (prevIsMKLDNN()) {
    const MatrixPtr& in = getInputGrad(0, MKLDNN_DEVICE);
    if (in == nullptr) {
      return;
    }
    if (getInput(0, MKLDNN_DEVICE).getAllCount() > 1) {
      // TODO: many mkldnn bots
      // add sum handle
    } else {
      inGrad_ = MKLDNNMatrix::create(in, inVal_->getPD());
    }
  } else {
    const MatrixPtr& in = getInputGrad(0, CPU_DEVICE);
    if (in == nullptr) {
      return;
    }
    if (getInput(0, CPU_DEVICE).getAllCount() > 1) {
      // TODO: many  bots
      // add sum handle
    } else {
      inGrad_ = MKLDNNMatrix::create(in, inVal_->getPD());
    }
T
tensor-tang 已提交
272
  }
273

T
tensor-tang 已提交
274 275
  fc_bwdData::desc bwdDataDesc =
      fc_bwdData::desc(inVal_->getMD(), wgtGrad_->getMD(), outGrad_->getMD());
T
tensor-tang 已提交
276 277
  fc_bwdData::primitive_desc bwdDataPD =
      fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD);
T
tensor-tang 已提交
278

T
tensor-tang 已提交
279 280
  CHECK(wgtVal_) << "Should have weight memory";
  bwdData_.reset(new fc_bwdData(bwdDataPD, *outGrad_, *wgtVal_, *inGrad_));
281
  printGradFormatFlow();
T
tensor-tang 已提交
282
  pipelineBwd_.push_back(*bwdData_);
T
tensor-tang 已提交
283 284
}

285
void MKLDNNFcLayer::forward(PassType passType) {
T
tensor-tang 已提交
286 287
  Layer::forward(passType);
  reshape();
T
tensor-tang 已提交
288

T
tensor-tang 已提交
289 290
  {
    REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
291
    syncInputValue();
T
tensor-tang 已提交
292 293 294

    // just submit forward pipeline
    stream_->submit(pipelineFwd_);
T
tensor-tang 已提交
295
  }
T
tensor-tang 已提交
296

T
tensor-tang 已提交
297 298 299 300 301 302
  /* activation */ {
    REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
    forwardActivation();
  }
}

303
void MKLDNNFcLayer::backward(const UpdateCallback& callback) {
T
tensor-tang 已提交
304 305 306 307 308 309 310
  /* Do derivation */ {
    REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
    backwardActivation();
  }

  {
    REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
T
tensor-tang 已提交
311 312
    resetBwd();

313
    syncOutputGrad();
T
tensor-tang 已提交
314 315
    // just sumbmit backward pipeline
    stream_->submit(pipelineBwd_);
T
tensor-tang 已提交
316 317 318 319 320
  }

  {
    REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
    weight_->getParameterPtr()->incUpdate(callback);
T
tensor-tang 已提交
321
    if (biases_ && biases_->getWGrad()) {
T
tensor-tang 已提交
322 323 324
      biases_->getParameterPtr()->incUpdate(callback);
    }
  }
T
tensor-tang 已提交
325
}
T
tensor-tang 已提交
326
}  // namespace paddle