MODEL_ZOO.md 22.1 KB
Newer Older
Q
qingqing01 已提交
1 2
English | [简体中文](MODEL_ZOO_cn.md)

J
jerrywgz 已提交
3 4 5 6
# Model Zoo and Benchmark
## Environment

- Python 2.7.1
7
- PaddlePaddle >=1.5
J
jerrywgz 已提交
8
- CUDA 9.0
9
- cuDNN >=7.4
J
jerrywgz 已提交
10 11 12 13
- NCCL 2.1.2

## Common settings

14
- All models below were trained on `coco_2017_train`, and tested on `coco_2017_val`.
J
jerrywgz 已提交
15 16 17
- Batch Normalization layers in backbones are replaced by Affine Channel layers.
- Unless otherwise noted, all ResNet backbones adopt the [ResNet-B](https://arxiv.org/pdf/1812.01187) variant..
- For RCNN and RetinaNet models, only horizontal flipping data augmentation was used in the training phase and no augmentations were used in the testing phase.
18 19
- **Inf time (fps)**: the inference time is measured with fps (image/s) on a single GPU (Tesla V100) with cuDNN 7.5 by running 'tools/eval.py' on all validation set, which including data loadding, network forward and post processing. The batch size is 1.

J
jerrywgz 已提交
20 21 22 23 24 25 26 27 28 29 30

## Training Schedules

- We adopt exactly the same training schedules as [Detectron](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#training-schedules).
- 1x indicates the schedule starts at a LR of 0.02 and is decreased by a factor of 10 after 60k and 80k iterations and eventually terminates at 90k iterations for minibatch size 16. For batch size 8, LR is decreased to 0.01, total training iterations are doubled, and the decay milestones are scaled by 2.
- 2x schedule is twice as long as 1x, with the LR milestones scaled accordingly.

## ImageNet Pretrained Models

The backbone models pretrained on ImageNet are available. All backbone models are pretrained on standard ImageNet-1k dataset and can be downloaded [here](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification#supported-models-and-performances).

31
- **Notes:**  The ResNet50 model was trained with cosine LR decay schedule and can be downloaded [here](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar).
J
jerrywgz 已提交
32 33 34 35 36

## Baselines

### Faster & Mask R-CNN

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
| Backbone                | Type           | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP |                           Download                           |
| :---------------------- | :------------- | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50                | Faster         |     1     |   1x    |     12.747     |  35.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar) |
| ResNet50                | Faster         |     1     |   2x    |     12.686     |  37.1  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar) |
| ResNet50                | Mask           |     1     |   1x    |     11.615     |  36.5  |  32.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_1x.tar) |
| ResNet50                | Mask           |     1     |   2x    |     11.494     |  38.2  |  33.4   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_2x.tar) |
| ResNet50-vd             | Faster         |     1     |   1x    |     12.575     |  36.4  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar) |
| ResNet50-FPN            | Faster         |     2     |   1x    |     22.273     |  37.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN            | Faster         |     2     |   2x    |     22.297     |  37.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar) |
| ResNet50-FPN            | Mask           |     1     |   1x    |     15.184     |  37.9  |  34.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN            | Mask           |     1     |   2x    |     15.881     |  38.7  |  34.7   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar) |
| ResNet50-FPN            | Cascade Faster |     2     |   1x    |     17.507     |  40.9  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN            | Cascade Mask   |     1     |   1x    |       -        |  41.3  |  35.5   | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_mask_rcnn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN         | Faster         |     2     |   2x    |     21.847     |  38.9  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar) |
| ResNet50-vd-FPN         | Mask           |     1     |   2x    |     15.825     |  39.8  |  35.4   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar) |
52
| CBResNet50-vd-FPN         | Faster         |     2     |   1x    |     -     |  39.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_cbr50_vd_dual_fpn_1x.tar) |
53 54 55 56 57 58 59
| ResNet101               | Faster         |     1     |   1x    |     9.316      |  38.3  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar) |
| ResNet101-FPN           | Faster         |     1     |   1x    |     17.297     |  38.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar) |
| ResNet101-FPN           | Faster         |     1     |   2x    |     17.246     |  39.1  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar) |
| ResNet101-FPN           | Mask           |     1     |   1x    |     12.983     |  39.5  |  35.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar) |
| ResNet101-vd-FPN        | Faster         |     1     |   1x    |     17.011     |  40.5  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_1x.tar) |
| ResNet101-vd-FPN        | Faster         |     1     |   2x    |     16.934     |  40.8  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar) |
| ResNet101-vd-FPN        | Mask           |     1     |   1x    |     13.105     |  41.4  |  36.8   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar) |
60
| CBResNet101-vd-FPN         | Faster         |     2     |   1x    |     -     |  42.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_cbr101_vd_dual_fpn_1x.tar) |
61 62 63 64 65 66
| ResNeXt101-vd-64x4d-FPN | Faster         |     1     |   1x    |     8.815      |  42.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_1x.tar) |
| ResNeXt101-vd-64x4d-FPN | Faster         |     1     |   2x    |     8.809      |  41.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_2x.tar) |
| ResNeXt101-vd-64x4d-FPN | Mask           |     1     |   1x    |     7.689      |  42.9  |  37.9   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_1x.tar) |
| ResNeXt101-vd-64x4d-FPN | Mask           |     1     |   2x    |     7.859      |  42.6  |  37.6   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_2x.tar) |
| SENet154-vd-FPN         | Faster         |     1     |  1.44x  |     3.408      |  42.9  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd_fpn_s1x.tar) |
| SENet154-vd-FPN         | Mask           |     1     |  1.44x  |     3.233      |  44.0  |  38.7   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar) |
67
| ResNet101-vd-FPN            | CascadeClsAware Faster   |     2     |   1x    |     -     |  44.7(softnms)  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms.tar) |
68
| ResNet101-vd-FPN            | CascadeClsAware Faster   |     2     |   1x    |     -     |  46.5(multi-scale test)  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms.tar) |
J
jerrywgz 已提交
69

70 71
### Deformable ConvNets v2

72 73 74 75 76 77 78 79 80 81 82 83 84
| Backbone                | Type           | Conv  | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP |                           Download                           |
| :---------------------- | :------------- | :---: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-FPN            | Faster         | c3-c5 |     2     |   1x    |     19.978     |  41.0  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN         | Faster         | c3-c5 |     2     |   2x    |     19.222     |  42.4  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_2x.tar) |
| ResNet101-vd-FPN        | Faster         | c3-c5 |     2     |   1x    |     14.477     |  44.1  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-64x4d-FPN | Faster         | c3-c5 |     1     |   1x    |     7.209      |  45.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
| ResNet50-FPN            | Mask           | c3-c5 |     1     |   1x    |     14.53      |  41.9  |  37.3   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN         | Mask           | c3-c5 |     1     |   2x    |     14.832     |  42.9  |  38.0   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_vd_fpn_2x.tar) |
| ResNet101-vd-FPN        | Mask           | c3-c5 |     1     |   1x    |     11.546     |  44.6  |  39.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-64x4d-FPN | Mask           | c3-c5 |     1     |   1x    |      6.45      |  46.2  |  40.4   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
| ResNet50-FPN            | Cascade Faster | c3-c5 |     2     |   1x    |       -        |  44.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet101-vd-FPN        | Cascade Faster | c3-c5 |     2     |   1x    |       -        |  46.4  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN       | Cascade Faster | c3-c5 |     2     |   1x    |       -        |  47.3  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
W
wangguanzhong 已提交
85
| SENet154-vd-FPN         | Cascade Mask   | c3-c5 |    1      |  1.44x  |       -        |  51.9  |  43.9   | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_mask_rcnn_dcnv2_se154_vd_fpn_gn_s1x.tar) |
86 87 88 89
| ResNet200-vd-FPN-Nonlocal    | CascadeClsAware Faster  | c3-c5 |     1     |   2.5x    |     -     |  51.7%(softnms)  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms.tar) |
| CBResNet200-vd-FPN-Nonlocal | Cascade Faster  | c3-c5 |     1     |   2.5x    |     -     |  53.3%(softnms)  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cbr200_vd_fpn_dcnv2_nonlocal_softnms.tar) |


G
Guanghua Yu 已提交
90 91
**Notes:**

92 93
- Deformable ConvNets v2(dcn_v2) reference from [Deformable ConvNets v2](https://arxiv.org/abs/1811.11168).
- `c3-c5` means adding `dcn` in resnet stage 3 to 5.
94
- Detailed configuration file in [configs/dcn](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn)
95

96 97

### HRNet
G
Guanghua Yu 已提交
98
* See more details in [HRNet model zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/hrnet/).
99 100 101


### Res2Net
G
Guanghua Yu 已提交
102
* See more details in [Res2Net model zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/res2net/).
littletomatodonkey's avatar
littletomatodonkey 已提交
103 104

### IOU loss
G
Guanghua Yu 已提交
105
* GIOU loss and DIOU loss are included now. See more details in [IOU loss model zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/iou_loss/).
106

littletomatodonkey's avatar
littletomatodonkey 已提交
107
### GCNet
G
Guanghua Yu 已提交
108
* See more details in [GCNet model zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/gcnet/).
littletomatodonkey's avatar
littletomatodonkey 已提交
109

110

W
wangguanzhong 已提交
111
### Group Normalization
G
Guanghua Yu 已提交
112

W
wangguanzhong 已提交
113 114 115 116 117
| Backbone             | Type           | Image/gpu | Lr schd | Box AP | Mask AP |                           Download                           |
| :------------------- | :------------- | :-----: | :-----: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-FPN         | Faster         |    2    |   2x    |  39.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_gn_2x.tar) |
| ResNet50-FPN         | Mask           |    1    |   2x    |  40.1  |   35.8  | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_gn_2x.tar) |

G
Guanghua Yu 已提交
118 119
**Notes:**

W
wangguanzhong 已提交
120
- Group Normalization reference from [Group Normalization](https://arxiv.org/abs/1803.08494).
121
- Detailed configuration file in [configs/gn](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/gn)
W
wangguanzhong 已提交
122

123
### YOLO v3
J
jerrywgz 已提交
124

W
wangguanzhong 已提交
125 126
| Backbone     | Pretrain dataset | Size | deformable Conv | Image/gpu | Lr schd | Inf time (fps) | Box AP |  Download |
| :----------- | :--------: | :-----: | :-----: |:------------: |:----: | :-------: | :----: | :-------: |
127 128 129 130 131 132 133 134 135
| DarkNet53 (paper) | ImageNet | 608  |  False    |    8    |   270e  |      -        |  33.0  | - |
| DarkNet53 (paper) | ImageNet | 416  |  False    |    8    |   270e  |      -        |  31.0  | - |
| DarkNet53 (paper) | ImageNet | 320  |  False    |    8    |   270e  |      -        |  28.2  | - |
| DarkNet53         | ImageNet | 608  |  False    |    8    |   270e  |    45.571     |  38.9  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53         | ImageNet | 416  |  False    |    8    |   270e  |      -        |  37.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53         | ImageNet | 320  |  False    |    8    |   270e  |      -        |  34.8  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| MobileNet-V1      | ImageNet | 608  |  False    |    8    |   270e  |    78.302     |  29.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1      | ImageNet | 416  |  False    |    8    |   270e  |      -        |  29.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1      | ImageNet | 320  |  False    |    8    |   270e  |      -        |  27.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
K
Kaipeng Deng 已提交
136 137 138
| MobileNet-V3      | ImageNet | 608  |  False    |    8    |   270e  |      -        |  31.6  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) |
| MobileNet-V3      | ImageNet | 416  |  False    |    8    |   270e  |      -        |  29.9  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) |
| MobileNet-V3      | ImageNet | 320  |  False    |    8    |   270e  |      -        |  27.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) |
139 140 141 142 143 144 145
| ResNet34          | ImageNet | 608  |  False    |    8    |   270e  |    63.356     |  36.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34          | ImageNet | 416  |  False    |    8    |   270e  |      -        |  34.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34          | ImageNet | 320  |  False    |    8    |   270e  |      -        |  31.4  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet50_vd       | ImageNet | 608  |  True     |    8    |   270e  |      -        |  39.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar) |
| ResNet50_vd       | Object365 | 608  |  True    |    8    |   270e  |      -        |  41.4  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |

### YOLO v3 on Pascal VOC
146

147 148 149 150 151 152 153 154 155 156 157
| Backbone     | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP |                           Download                           |
| :----------- | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: |
| DarkNet53    | 608  |     8     |  270e   |     54.977     |  83.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53    | 416  |     8     |  270e   |       -        |  83.6  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53    | 320  |     8     |  270e   |       -        |  82.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| MobileNet-V1 | 608  |     8     |  270e   |    104.291     |  76.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 416  |     8     |  270e   |       -        |  76.7  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 320  |     8     |  270e   |       -        |  75.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| ResNet34     | 608  |     8     |  270e   |     82.247     |  82.6  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34     | 416  |     8     |  270e   |       -        |  81.9  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34     | 320  |     8     |  270e   |       -        |  80.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
158

G
Guanghua Yu 已提交
159 160
**Notes:**

161 162 163 164
- YOLOv3-DarkNet53 performance in paper [YOLOv3](https://arxiv.org/abs/1804.02767) is also provided above, our implements
improved performance mainly by using L1 loss in bounding box width and height regression, image mixup and label smooth.
- YOLO v3 is trained in 8 GPU with total batch size as 64 and trained 270 epoches. YOLO v3 training data augmentations: mixup,
randomly color distortion, randomly cropping, randomly expansion, randomly interpolation method, randomly flippling. YOLO v3 used randomly
165
reshaped minibatch in training, inferences can be performed on different image sizes with the same model weights, and we provided evaluation
W
wangguanzhong 已提交
166
results of image size 608/416/320 above. Deformable conv is added on stage 5 of backbone.
L
lxastro 已提交
167
- YOLO v3 enhanced model improves the precision to 43.6 involved with deformable conv, dropblock, IoU loss and IoU aware. See more details in [YOLOv3_ENHANCEMENT](./featured_model/YOLOv3_ENHANCEMENT.md)
J
jerrywgz 已提交
168 169 170

### RetinaNet

171 172 173 174 175
| Backbone          | Image/gpu | Lr schd | Box AP | Download  |
| :---------------: | :-----: | :-----: | :----: | :-------: |
| ResNet50-FPN      |    2    |   1x    |  36.0  | [model](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r50_fpn_1x.tar)  |
| ResNet101-FPN     |    2    |   1x    |  37.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r101_fpn_1x.tar) |
| ResNeXt101-vd-FPN |    1    |   1x    |  40.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_x101_vd_64x4d_fpn_1x.tar) |
J
jerrywgz 已提交
176 177

**Notes:** In RetinaNet, the base LR is changed to 0.01 for minibatch size 16.
J
jerrywgz 已提交
178

179 180 181 182 183 184 185 186 187
### SSDLite

| Backbone | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP |                           Download                           |
| :------: | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: |
| MobileNet_v3 small | 320 | 64 | 40w | - | 16.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mobilenet_v3_ssdlite_small.tar) |
| MobileNet_v3 large | 320 | 64 | 40w | - | 22.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mobilenet_v3_ssdlite_large.tar) |

**Notes:** MobileNet_v3-SSDLite is trained in 8 GPU with total batch size as 512 and uses cosine decay strategy to train.

188 189
### SSD

190 191 192 193
| Backbone | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP |                           Download                           |
| :------: | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: |
|  VGG16   | 300  |     8     |   40w   |     81.613     |  25.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_300.tar) |
|  VGG16   | 512  |     8     |   40w   |     46.007     |  29.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512.tar) |
194 195 196

**Notes:** VGG-SSD is trained in 4 GPU with total batch size as 32 and trained 400000 iters.

Q
qingqing01 已提交
197
### SSD on Pascal VOC
J
jerrywgz 已提交
198

199 200 201 202 203
| Backbone     | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP |                           Download                           |
| :----------- | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: |
| MobileNet v1 | 300  |    32     |  120e   |    159.543     |  73.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar) |
| VGG16        | 300  |     8     |  240e   |    117.279     |  77.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_300_voc.tar) |
| VGG16        | 512  |     8     |  240e   |     65.975     |  80.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512_voc.tar) |
K
Kaipeng Deng 已提交
204

205
**NOTE**: MobileNet-SSD is trained in 2 GPU with totoal batch size as 64 and trained 120 epoches. VGG-SSD is trained in 4 GPU with total batch size as 32 and trained 240 epoches. SSD training data augmentations: randomly color distortion,
J
jerrywgz 已提交
206
randomly cropping, randomly expansion, randomly flipping.
207 208


G
Guanghua Yu 已提交
209
### Face Detection
210

G
Guanghua Yu 已提交
211
Please refer [face detection models](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/face_detection) for details.
212 213


G
Guanghua Yu 已提交
214
### Object Detection in Open Images Dataset V5
215

G
Guanghua Yu 已提交
216
Please refer [Open Images Dataset V5 Baseline model](featured_model/OIDV5_BASELINE_MODEL.md) for details.
W
wangguanzhong 已提交
217 218 219 220

### Anchor Free Models

Please refer [Anchor Free Models](featured_model/ANCHOR_FREE_DETECTION.md) for details.