Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
aaf77a05
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aaf77a05
编写于
1月 07, 2020
作者:
littletomatodonkey
提交者:
GitHub
1月 07, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add gcnet model (#166)
* add gcnet model :
https://arxiv.org/abs/1904.11492
上级
c925d0f6
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
442 addition
and
17 deletion
+442
-17
configs/gcnet/README.md
configs/gcnet/README.md
+34
-0
configs/gcnet/mask_rcnn_r50_vd_fpn_gcb_add_r16_2x.yml
configs/gcnet/mask_rcnn_r50_vd_fpn_gcb_add_r16_2x.yml
+119
-0
configs/gcnet/mask_rcnn_r50_vd_fpn_gcb_mul_r16_2x.yml
configs/gcnet/mask_rcnn_r50_vd_fpn_gcb_mul_r16_2x.yml
+119
-0
docs/MODEL_ZOO.md
docs/MODEL_ZOO.md
+3
-0
docs/MODEL_ZOO_cn.md
docs/MODEL_ZOO_cn.md
+3
-0
ppdet/modeling/backbones/gc_block.py
ppdet/modeling/backbones/gc_block.py
+124
-0
ppdet/modeling/backbones/resnet.py
ppdet/modeling/backbones/resnet.py
+40
-17
未找到文件。
configs/gcnet/README.md
0 → 100644
浏览文件 @
aaf77a05
# GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
## Introduction
-
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
:
[
https://arxiv.org/abs/1904.11492
](
https://arxiv.org/abs/1904.11492
)
```
@article{DBLP:journals/corr/abs-1904-11492,
author = {Yue Cao and
Jiarui Xu and
Stephen Lin and
Fangyun Wei and
Han Hu},
title = {GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond},
journal = {CoRR},
volume = {abs/1904.11492},
year = {2019},
url = {http://arxiv.org/abs/1904.11492},
archivePrefix = {arXiv},
eprint = {1904.11492},
timestamp = {Tue, 09 Jul 2019 16:48:55 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1904-11492},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
## Model Zoo
| Backbone | Type | Context| Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download |
| :---------------------- | :-------------: | :-------------: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-vd-FPN | Mask | GC(c3-c5, r16, add) | 2 | 2x | 15.31 | 41.4 | 36.8 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_gcb_add_r16_2x.tar
)
|
| ResNet50-vd-FPN | Mask | GC(c3-c5, r16, mul) | 2 | 2x | 15.35 | 40.7 | 36.1 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_gcb_mul_r16_2x.tar
)
|
configs/gcnet/mask_rcnn_r50_vd_fpn_gcb_add_r16_2x.yml
0 → 100644
浏览文件 @
aaf77a05
architecture
:
MaskRCNN
use_gpu
:
true
max_iters
:
180000
snapshot_iter
:
10000
log_smooth_window
:
20
save_dir
:
output
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
metric
:
COCO
weights
:
output/mask_rcnn_r50_vd_fpn_gcb_add_r16_2x/model_final/
num_classes
:
81
MaskRCNN
:
backbone
:
ResNet
fpn
:
FPN
rpn_head
:
FPNRPNHead
roi_extractor
:
FPNRoIAlign
bbox_head
:
BBoxHead
bbox_assigner
:
BBoxAssigner
ResNet
:
depth
:
50
feature_maps
:
[
2
,
3
,
4
,
5
]
freeze_at
:
2
norm_type
:
bn
variant
:
d
gcb_stages
:
[
3
,
4
,
5
]
gcb_params
:
ratio
:
0.0625
pooling_type
:
att
fusion_types
:
[
channel_add
]
FPN
:
max_level
:
6
min_level
:
2
num_chan
:
256
spatial_scale
:
[
0.03125
,
0.0625
,
0.125
,
0.25
]
FPNRPNHead
:
anchor_generator
:
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
variance
:
[
1.0
,
1.0
,
1.0
,
1.0
]
anchor_start_size
:
32
max_level
:
6
min_level
:
2
num_chan
:
256
rpn_target_assign
:
rpn_batch_size_per_im
:
256
rpn_fg_fraction
:
0.5
rpn_negative_overlap
:
0.3
rpn_positive_overlap
:
0.7
rpn_straddle_thresh
:
0.0
train_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
pre_nms_top_n
:
2000
post_nms_top_n
:
2000
test_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
pre_nms_top_n
:
1000
post_nms_top_n
:
1000
FPNRoIAlign
:
canconical_level
:
4
canonical_size
:
224
max_level
:
5
min_level
:
2
box_resolution
:
7
sampling_ratio
:
2
mask_resolution
:
14
MaskHead
:
dilation
:
1
conv_dim
:
256
num_convs
:
4
resolution
:
28
BBoxAssigner
:
batch_size_per_im
:
512
bbox_reg_weights
:
[
0.1
,
0.1
,
0.2
,
0.2
]
bg_thresh_hi
:
0.5
bg_thresh_lo
:
0.0
fg_fraction
:
0.25
fg_thresh
:
0.5
MaskAssigner
:
resolution
:
28
BBoxHead
:
head
:
TwoFCHead
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
TwoFCHead
:
mlp_dim
:
1024
LearningRate
:
base_lr
:
0.02
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
120000
,
160000
]
-
!LinearWarmup
start_factor
:
0.1
steps
:
1000
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0001
type
:
L2
_READER_
:
'
../mask_fpn_reader.yml'
TrainReader
:
batch_size
:
2
configs/gcnet/mask_rcnn_r50_vd_fpn_gcb_mul_r16_2x.yml
0 → 100644
浏览文件 @
aaf77a05
architecture
:
MaskRCNN
use_gpu
:
true
max_iters
:
180000
snapshot_iter
:
10000
log_smooth_window
:
20
save_dir
:
output
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
metric
:
COCO
weights
:
output/mask_rcnn_r50_vd_fpn_gcb_mul_r16_2x/model_final/
num_classes
:
81
MaskRCNN
:
backbone
:
ResNet
fpn
:
FPN
rpn_head
:
FPNRPNHead
roi_extractor
:
FPNRoIAlign
bbox_head
:
BBoxHead
bbox_assigner
:
BBoxAssigner
ResNet
:
depth
:
50
feature_maps
:
[
2
,
3
,
4
,
5
]
freeze_at
:
2
norm_type
:
bn
variant
:
d
gcb_stages
:
[
3
,
4
,
5
]
gcb_params
:
ratio
:
0.0625
pooling_type
:
att
fusion_types
:
[
channel_mul
]
FPN
:
max_level
:
6
min_level
:
2
num_chan
:
256
spatial_scale
:
[
0.03125
,
0.0625
,
0.125
,
0.25
]
FPNRPNHead
:
anchor_generator
:
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
variance
:
[
1.0
,
1.0
,
1.0
,
1.0
]
anchor_start_size
:
32
max_level
:
6
min_level
:
2
num_chan
:
256
rpn_target_assign
:
rpn_batch_size_per_im
:
256
rpn_fg_fraction
:
0.5
rpn_negative_overlap
:
0.3
rpn_positive_overlap
:
0.7
rpn_straddle_thresh
:
0.0
train_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
pre_nms_top_n
:
2000
post_nms_top_n
:
2000
test_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
pre_nms_top_n
:
1000
post_nms_top_n
:
1000
FPNRoIAlign
:
canconical_level
:
4
canonical_size
:
224
max_level
:
5
min_level
:
2
box_resolution
:
7
sampling_ratio
:
2
mask_resolution
:
14
MaskHead
:
dilation
:
1
conv_dim
:
256
num_convs
:
4
resolution
:
28
BBoxAssigner
:
batch_size_per_im
:
512
bbox_reg_weights
:
[
0.1
,
0.1
,
0.2
,
0.2
]
bg_thresh_hi
:
0.5
bg_thresh_lo
:
0.0
fg_fraction
:
0.25
fg_thresh
:
0.5
MaskAssigner
:
resolution
:
28
BBoxHead
:
head
:
TwoFCHead
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
TwoFCHead
:
mlp_dim
:
1024
LearningRate
:
base_lr
:
0.02
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
120000
,
160000
]
-
!LinearWarmup
start_factor
:
0.1
steps
:
1000
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0001
type
:
L2
_READER_
:
'
../mask_fpn_reader.yml'
TrainReader
:
batch_size
:
2
docs/MODEL_ZOO.md
浏览文件 @
aaf77a05
...
...
@@ -102,6 +102,9 @@ The backbone models pretrained on ImageNet are available. All backbone models ar
### IOU loss
*
GIOU loss and DIOU loss are included now. See more details in
[
IOU loss model zoo
](
../configs/iou_loss/README.md
)
.
### GCNet
*
See more details in
[
GCNet model zoo
](
../configs/gcnet/README.md
)
.
### Group Normalization
| Backbone | Type | Image/gpu | Lr schd | Box AP | Mask AP | Download |
...
...
docs/MODEL_ZOO_cn.md
浏览文件 @
aaf77a05
...
...
@@ -99,6 +99,9 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
### IOU loss
*
目前模型库中包括GIOU loss和DIOU loss,详情加
[
IOU loss模型库
](
../configs/iou_loss/README.md
)
.
### GCNet
*
详情见
[
GCNet模型库
](
../configs/gcnet/README.md
)
.
### Group Normalization
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 | Box AP | Mask AP | 下载 |
...
...
ppdet/modeling/backbones/gc_block.py
0 → 100755
浏览文件 @
aaf77a05
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
unicode_literals
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
ParamAttr
from
paddle.fluid.initializer
import
ConstantInitializer
def
spatial_pool
(
x
,
pooling_type
,
name
):
_
,
channel
,
height
,
width
=
x
.
shape
if
pooling_type
==
'att'
:
input_x
=
x
# [N, 1, C, H * W]
input_x
=
fluid
.
layers
.
reshape
(
input_x
,
shape
=
(
0
,
1
,
channel
,
-
1
))
context_mask
=
fluid
.
layers
.
conv2d
(
input
=
x
,
num_filters
=
1
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_bias"
))
# [N, 1, H * W]
context_mask
=
fluid
.
layers
.
reshape
(
context_mask
,
shape
=
(
0
,
0
,
-
1
))
# [N, 1, H * W]
context_mask
=
fluid
.
layers
.
softmax
(
context_mask
,
axis
=
2
)
# [N, 1, H * W, 1]
context_mask
=
fluid
.
layers
.
reshape
(
context_mask
,
shape
=
(
0
,
0
,
-
1
,
1
))
# [N, 1, C, 1]
context
=
fluid
.
layers
.
matmul
(
input_x
,
context_mask
)
# [N, C, 1, 1]
context
=
fluid
.
layers
.
reshape
(
context
,
shape
=
(
0
,
channel
,
1
,
1
))
else
:
# [N, C, 1, 1]
context
=
fluid
.
layers
.
pool2d
(
input
=
x
,
pool_type
=
'avg'
,
global_pooling
=
True
)
return
context
def
channel_conv
(
input
,
inner_ch
,
out_ch
,
name
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
inner_ch
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
param_attr
=
ParamAttr
(
name
=
name
+
"_conv1_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_conv1_bias"
),
name
=
name
+
"_conv1"
,
)
conv
=
fluid
.
layers
.
layer_norm
(
conv
,
begin_norm_axis
=
1
,
param_attr
=
ParamAttr
(
name
=
name
+
"_ln_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_ln_bias"
),
act
=
"relu"
,
name
=
name
+
"_ln"
)
conv
=
fluid
.
layers
.
conv2d
(
input
=
conv
,
num_filters
=
out_ch
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
param_attr
=
ParamAttr
(
name
=
name
+
"_conv2_weights"
,
initializer
=
ConstantInitializer
(
value
=
0.0
),
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_conv2_bias"
,
initializer
=
ConstantInitializer
(
value
=
0.0
),
),
name
=
name
+
"_conv2"
)
return
conv
def
add_gc_block
(
x
,
ratio
=
1.0
/
16
,
pooling_type
=
'att'
,
fusion_types
=
[
'channel_add'
],
name
=
None
):
'''
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond, see https://arxiv.org/abs/1904.11492
Args:
ratio (float): channel reduction ratio
pooling_type (str): pooling type, support att and avg
fusion_types (list): fusion types, support channel_add and channel_mul
name (str): prefix name of gc block
'''
assert
pooling_type
in
[
'avg'
,
'att'
]
assert
isinstance
(
fusion_types
,
(
list
,
tuple
))
valid_fusion_types
=
[
'channel_add'
,
'channel_mul'
]
assert
all
([
f
in
valid_fusion_types
for
f
in
fusion_types
])
assert
len
(
fusion_types
)
>
0
,
'at least one fusion should be used'
inner_ch
=
int
(
ratio
*
x
.
shape
[
1
])
out_ch
=
x
.
shape
[
1
]
context
=
spatial_pool
(
x
,
pooling_type
,
name
+
"_spatial_pool"
)
out
=
x
if
'channel_mul'
in
fusion_types
:
inner_out
=
channel_conv
(
context
,
inner_ch
,
out_ch
,
name
+
"_mul"
)
channel_mul_term
=
fluid
.
layers
.
sigmoid
(
inner_out
)
out
=
out
*
channel_mul_term
if
'channel_add'
in
fusion_types
:
channel_add_term
=
channel_conv
(
context
,
inner_ch
,
out_ch
,
name
+
"_add"
)
out
=
out
+
channel_add_term
return
out
ppdet/modeling/backbones/resnet.py
浏览文件 @
aaf77a05
...
...
@@ -28,6 +28,7 @@ from ppdet.core.workspace import register, serializable
from
numbers
import
Integral
from
.nonlocal_helper
import
add_space_nonlocal
from
.gc_block
import
add_gc_block
from
.name_adapter
import
NameAdapter
__all__
=
[
'ResNet'
,
'ResNetC5'
]
...
...
@@ -48,6 +49,10 @@ class ResNet(object):
feature_maps (list): index of stages whose feature maps are returned
dcn_v2_stages (list): index of stages who select deformable conv v2
nonlocal_stages (list): index of stages who select nonlocal networks
gcb_stages (list): index of stages who select gc blocks
gcb_params (dict): gc blocks config, includes ratio(default as 1.0/16),
pooling_type(default as "att") and
fusion_types(default as ['channel_add'])
"""
__shared__
=
[
'norm_type'
,
'freeze_norm'
,
'weight_prefix_name'
]
...
...
@@ -61,7 +66,9 @@ class ResNet(object):
feature_maps
=
[
2
,
3
,
4
,
5
],
dcn_v2_stages
=
[],
weight_prefix_name
=
''
,
nonlocal_stages
=
[]):
nonlocal_stages
=
[],
gcb_stages
=
[],
gcb_params
=
dict
()):
super
(
ResNet
,
self
).
__init__
()
if
isinstance
(
feature_maps
,
Integral
):
...
...
@@ -97,15 +104,18 @@ class ResNet(object):
self
.
_c1_out_chan_num
=
64
self
.
na
=
NameAdapter
(
self
)
self
.
prefix_name
=
weight_prefix_name
self
.
nonlocal_stages
=
nonlocal_stages
self
.
nonlocal_mod_cfg
=
{
50
:
2
,
101
:
5
,
152
:
8
,
200
:
12
,
50
:
2
,
101
:
5
,
152
:
8
,
200
:
12
,
}
self
.
gcb_stages
=
gcb_stages
self
.
gcb_params
=
gcb_params
def
_conv_offset
(
self
,
input
,
filter_size
,
...
...
@@ -257,7 +267,9 @@ class ResNet(object):
stride
,
is_first
,
name
,
dcn_v2
=
False
):
dcn_v2
=
False
,
gcb
=
False
,
gcb_name
=
None
):
if
self
.
variant
==
'a'
:
stride1
,
stride2
=
stride
,
1
else
:
...
...
@@ -309,6 +321,8 @@ class ResNet(object):
if
callable
(
getattr
(
self
,
'_squeeze_excitation'
,
None
)):
residual
=
self
.
_squeeze_excitation
(
input
=
residual
,
num_channels
=
num_filters
,
name
=
'fc'
+
name
)
if
gcb
:
residual
=
add_gc_block
(
residual
,
name
=
gcb_name
,
**
self
.
gcb_params
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
residual
,
act
=
'relu'
,
name
=
name
+
".add.output.5"
)
...
...
@@ -318,8 +332,11 @@ class ResNet(object):
stride
,
is_first
,
name
,
dcn_v2
=
False
):
dcn_v2
=
False
,
gcb
=
False
,
gcb_name
=
None
):
assert
dcn_v2
is
False
,
"Not implemented yet."
assert
gcb
is
False
,
"Not implemented yet."
conv0
=
self
.
_conv_norm
(
input
=
input
,
num_filters
=
num_filters
,
...
...
@@ -354,11 +371,12 @@ class ResNet(object):
ch_out
=
self
.
stage_filters
[
stage_num
-
2
]
is_first
=
False
if
stage_num
!=
2
else
True
dcn_v2
=
True
if
stage_num
in
self
.
dcn_v2_stages
else
False
nonlocal_mod
=
1000
if
stage_num
in
self
.
nonlocal_stages
:
nonlocal_mod
=
self
.
nonlocal_mod_cfg
[
self
.
depth
]
if
stage_num
==
4
else
2
nonlocal_mod
=
self
.
nonlocal_mod_cfg
[
self
.
depth
]
if
stage_num
==
4
else
2
# Make the layer name and parameter name consistent
# with ImageNet pre-trained model
conv
=
input
...
...
@@ -366,21 +384,26 @@ class ResNet(object):
conv_name
=
self
.
na
.
fix_layer_warp_name
(
stage_num
,
count
,
i
)
if
self
.
depth
<
50
:
is_first
=
True
if
i
==
0
and
stage_num
==
2
else
False
gcb
=
stage_num
in
self
.
gcb_stages
gcb_name
=
"gcb_res{}_b{}"
.
format
(
stage_num
,
i
)
conv
=
block_func
(
input
=
conv
,
num_filters
=
ch_out
,
stride
=
2
if
i
==
0
and
stage_num
!=
2
else
1
,
is_first
=
is_first
,
name
=
conv_name
,
dcn_v2
=
dcn_v2
)
dcn_v2
=
dcn_v2
,
gcb
=
gcb
,
gcb_name
=
gcb_name
)
# add non local model
dim_in
=
conv
.
shape
[
1
]
nonlocal_name
=
"nonlocal_conv{}"
.
format
(
stage_num
)
nonlocal_name
=
"nonlocal_conv{}"
.
format
(
stage_num
)
if
i
%
nonlocal_mod
==
nonlocal_mod
-
1
:
conv
=
add_space_nonlocal
(
conv
,
dim_in
,
dim_in
,
nonlocal_name
+
'_{}'
.
format
(
i
),
int
(
dim_in
/
2
)
)
conv
=
add_space_nonlocal
(
conv
,
dim_in
,
dim_in
,
nonlocal_name
+
'_{}'
.
format
(
i
)
,
int
(
dim_in
/
2
)
)
return
conv
def
c1_stage
(
self
,
input
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录