未验证 提交 b351703b 编写于 作者: littletomatodonkey's avatar littletomatodonkey 提交者: GitHub

add mstest in cascade_clsaware (#303)

* add multi-scale testing function in cascade rcnn clsaware architecture
上级 6b98421d
architecture: CascadeRCNNClsAware
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
weights: output/cascade_rcnn_cls_aware_r101_vd_fpn_ms_test/model_final
metric: COCO
num_classes: 81
CascadeRCNNClsAware:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: CascadeBBoxHead
bbox_assigner: CascadeBBoxAssigner
ResNet:
norm_type: bn
depth: 101
feature_maps: [2, 3, 4, 5]
freeze_at: 2
variant: d
FPN:
min_level: 2
max_level: 6
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
min_level: 2
max_level: 6
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_positive_overlap: 0.7
rpn_negative_overlap: 0.3
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
min_level: 2
max_level: 5
box_resolution: 14
sampling_ratio: 2
CascadeBBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [10, 20, 30]
bg_thresh_lo: [0.0, 0.0, 0.0]
bg_thresh_hi: [0.5, 0.6, 0.7]
fg_thresh: [0.5, 0.6, 0.7]
fg_fraction: 0.25
class_aware: True
CascadeBBoxHead:
head: CascadeTwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
CascadeTwoFCHead:
mlp_dim: 1024
MultiScaleTEST:
score_thresh: 0.05
nms_thresh: 0.5
detections_per_im: 100
enable_voting: true
vote_thresh: 0.9
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [60000, 80000]
- !LinearWarmup
start_factor: 0.0
steps: 2000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
EvalReader:
batch_size: 1
inputs_def:
fields: ['image', 'im_info', 'im_id', 'im_shape']
multi_scale: true
num_scales: 18
use_flip: true
dataset:
!COCODataSet
dataset_dir: dataset/coco
anno_path: annotations/instances_val2017.json
image_dir: val2017
sample_transforms:
- !DecodeImage
to_rgb: true
- !NormalizeImage
is_channel_first: false
is_scale: true
mean:
- 0.485
- 0.456
- 0.406
std:
- 0.229
- 0.224
- 0.225
- !MultiscaleTestResize
origin_target_size: 800
origin_max_size: 1333
target_size:
- 400
- 500
- 600
- 700
- 900
- 1000
- 1100
- 1200
max_size: 2000
use_flip: true
- !Permute
channel_first: true
to_bgr: false
- !PadMultiScaleTest
pad_to_stride: 32
worker_num: 2
......@@ -65,6 +65,7 @@ The backbone models pretrained on ImageNet are available. All backbone models ar
| SENet154-vd-FPN | Faster | 1 | 1.44x | 3.408 | 42.9 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd_fpn_s1x.tar) |
| SENet154-vd-FPN | Mask | 1 | 1.44x | 3.233 | 44.0 | 38.7 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar) |
| ResNet101-vd-FPN | CascadeClsAware Faster | 2 | 1x | - | 44.7(softnms) | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms.tar) |
| ResNet101-vd-FPN | CascadeClsAware Faster | 2 | 1x | - | 46.5(multi-scale test) | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms.tar) |
### Deformable ConvNets v2
......
......@@ -62,7 +62,7 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
| SENet154-vd-FPN | Faster | 1 | 1.44x | 3.408 | 42.9 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd_fpn_s1x.tar) |
| SENet154-vd-FPN | Mask | 1 | 1.44x | 3.233 | 44.0 | 38.7 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar) |
| ResNet101-vd-FPN | CascadeClsAware Faster | 2 | 1x | - | 44.7(softnms) | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms.tar) |
| ResNet101-vd-FPN | CascadeClsAware Faster | 2 | 1x | - | 46.5(multi-scale test) | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms.tar) |
### Deformable 卷积网络v2
......
......@@ -187,7 +187,6 @@ class CascadeRCNN(object):
# backbone
body_feats = self.backbone(im)
result.update(body_feats)
body_feat_names = list(body_feats.keys())
# FPN
if self.fpn is not None:
......
......@@ -23,8 +23,8 @@ from collections import OrderedDict
import copy
import paddle.fluid as fluid
from ppdet.core.workspace import register
from .input_helper import multiscale_def
__all__ = ['CascadeRCNNClsAware']
......@@ -170,6 +170,94 @@ class CascadeRCNNClsAware(object):
self.cascade_decoded_box, self.cascade_bbox_reg_weights)
return pred
def build_multi_scale(self, feed_vars):
required_fields = ['image', 'im_shape', 'im_info']
self._input_check(required_fields, feed_vars)
result = {}
im_shape = feed_vars['im_shape']
result['im_shape'] = im_shape
for i in range(len(self.im_info_names) // 2):
im = feed_vars[self.im_info_names[2 * i]]
im_info = feed_vars[self.im_info_names[2 * i + 1]]
# backbone
body_feats = self.backbone(im)
result.update(body_feats)
# FPN
if self.fpn is not None:
body_feats, spatial_scale = self.fpn.get_output(body_feats)
# rpn proposals
rpn_rois = self.rpn_head.get_proposals(
body_feats, im_info, mode="test")
proposal_list = []
roi_feat_list = []
rcnn_pred_list = []
rcnn_target_list = []
bbox_pred = None
self.cascade_var_v = []
for stage in range(3):
var_v = np.array(
self.cascade_bbox_reg_weights[stage], dtype="float32")
prior_box_var = fluid.layers.create_tensor(dtype="float32")
fluid.layers.assign(input=var_v, output=prior_box_var)
self.cascade_var_v.append(prior_box_var)
self.cascade_decoded_box = []
self.cascade_cls_prob = []
for stage in range(3):
if stage > 0:
pool_rois = decoded_assign_box
else:
pool_rois = rpn_rois
# extract roi features
roi_feat = self.roi_extractor(body_feats, pool_rois,
spatial_scale)
roi_feat_list.append(roi_feat)
# bbox head
cls_score, bbox_pred = self.bbox_head.get_output(
roi_feat,
cls_agnostic_bbox_reg=self.bbox_head.num_classes,
wb_scalar=1.0 / self.cascade_rcnn_loss_weight[stage],
name='_' + str(stage + 1))
cls_prob = fluid.layers.softmax(cls_score, use_cudnn=False)
decoded_box, decoded_assign_box = fluid.layers.box_decoder_and_assign(
pool_rois, self.cascade_var_v[stage], bbox_pred, cls_prob,
self.bbox_clip)
self.cascade_cls_prob.append(cls_prob)
self.cascade_decoded_box.append(decoded_box)
rcnn_pred_list.append((cls_score, bbox_pred))
pred = self.bbox_head.get_prediction_cls_aware(
im_info,
im_shape,
self.cascade_cls_prob,
self.cascade_decoded_box,
self.cascade_bbox_reg_weights,
return_box_score=True)
bbox_name = 'bbox_' + str(i)
score_name = 'score_' + str(i)
if 'flip' in im.name:
bbox_name += '_flip'
score_name += '_flip'
result[bbox_name] = pred['bbox']
result[score_name] = pred['score']
return result
def _inputs_def(self, image_shape):
im_shape = [None] + image_shape
# yapf: disable
......@@ -192,9 +280,20 @@ class CascadeRCNNClsAware(object):
'image', 'im_info', 'im_id', 'gt_bbox', 'gt_class',
'is_crowd', 'gt_mask'
],
multi_scale=False,
num_scales=-1,
use_flip=None,
use_dataloader=True,
iterable=False):
inputs_def = self._inputs_def(image_shape)
fields = copy.deepcopy(fields)
if multi_scale:
ms_def, ms_fields = multiscale_def(image_shape, num_scales,
use_flip)
inputs_def.update(ms_def)
fields += ms_fields
self.im_info_names = ['image', 'im_info'] + ms_fields
feed_vars = OrderedDict([(key, fluid.data(
name=key,
shape=inputs_def[key]['shape'],
......@@ -207,10 +306,17 @@ class CascadeRCNNClsAware(object):
iterable=iterable) if use_dataloader else None
return feed_vars, loader
def _input_check(self, require_fields, feed_vars):
for var in require_fields:
assert var in feed_vars, \
"{} has no {} field".format(feed_vars, var)
def train(self, feed_vars):
return self.build(feed_vars, 'train')
def eval(self, feed_vars):
def eval(self, feed_vars, multi_scale=None):
if multi_scale:
return self.build_multi_scale(feed_vars)
return self.build(feed_vars, 'test')
def test(self, feed_vars):
......
......@@ -220,8 +220,13 @@ class CascadeBBoxHead(object):
pred_result = self.nms(bboxes=box_out, scores=boxes_cls_prob_mean)
return {"bbox": pred_result}
def get_prediction_cls_aware(self, im_info, im_shape, cascade_cls_prob,
cascade_decoded_box, cascade_bbox_reg_weights):
def get_prediction_cls_aware(self,
im_info,
im_shape,
cascade_cls_prob,
cascade_decoded_box,
cascade_bbox_reg_weights,
return_box_score=False):
'''
get_prediction_cls_aware: predict bbox for each class
'''
......@@ -247,6 +252,8 @@ class CascadeBBoxHead(object):
decoded_bbox, shape=(-1, self.num_classes, 4))
box_out = fluid.layers.box_clip(input=decoded_bbox, im_info=im_shape)
if return_box_score:
return {'bbox': box_out, 'score': sum_cascade_cls_prob}
pred_result = self.nms(bboxes=box_out, scores=sum_cascade_cls_prob)
return {"bbox": pred_result}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册