Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b351703b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b351703b
编写于
3月 05, 2020
作者:
littletomatodonkey
提交者:
GitHub
3月 05, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mstest in cascade_clsaware (#303)
* add multi-scale testing function in cascade rcnn clsaware architecture
上级
6b98421d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
276 addition
and
6 deletion
+276
-6
configs/cascade_rcnn_cls_aware_r101_vd_fpn_ms_test.yml
configs/cascade_rcnn_cls_aware_r101_vd_fpn_ms_test.yml
+157
-0
docs/MODEL_ZOO.md
docs/MODEL_ZOO.md
+1
-0
docs/MODEL_ZOO_cn.md
docs/MODEL_ZOO_cn.md
+1
-1
ppdet/modeling/architectures/cascade_rcnn.py
ppdet/modeling/architectures/cascade_rcnn.py
+0
-1
ppdet/modeling/architectures/cascade_rcnn_cls_aware.py
ppdet/modeling/architectures/cascade_rcnn_cls_aware.py
+108
-2
ppdet/modeling/roi_heads/cascade_head.py
ppdet/modeling/roi_heads/cascade_head.py
+9
-2
未找到文件。
configs/cascade_rcnn_cls_aware_r101_vd_fpn_ms_test.yml
0 → 100644
浏览文件 @
b351703b
architecture
:
CascadeRCNNClsAware
max_iters
:
90000
snapshot_iter
:
10000
use_gpu
:
true
log_smooth_window
:
20
save_dir
:
output
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
weights
:
output/cascade_rcnn_cls_aware_r101_vd_fpn_ms_test/model_final
metric
:
COCO
num_classes
:
81
CascadeRCNNClsAware
:
backbone
:
ResNet
fpn
:
FPN
rpn_head
:
FPNRPNHead
roi_extractor
:
FPNRoIAlign
bbox_head
:
CascadeBBoxHead
bbox_assigner
:
CascadeBBoxAssigner
ResNet
:
norm_type
:
bn
depth
:
101
feature_maps
:
[
2
,
3
,
4
,
5
]
freeze_at
:
2
variant
:
d
FPN
:
min_level
:
2
max_level
:
6
num_chan
:
256
spatial_scale
:
[
0.03125
,
0.0625
,
0.125
,
0.25
]
FPNRPNHead
:
anchor_generator
:
anchor_sizes
:
[
32
,
64
,
128
,
256
,
512
]
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
stride
:
[
16.0
,
16.0
]
variance
:
[
1.0
,
1.0
,
1.0
,
1.0
]
anchor_start_size
:
32
min_level
:
2
max_level
:
6
num_chan
:
256
rpn_target_assign
:
rpn_batch_size_per_im
:
256
rpn_fg_fraction
:
0.5
rpn_positive_overlap
:
0.7
rpn_negative_overlap
:
0.3
rpn_straddle_thresh
:
0.0
train_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
pre_nms_top_n
:
2000
post_nms_top_n
:
2000
test_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
pre_nms_top_n
:
1000
post_nms_top_n
:
1000
FPNRoIAlign
:
canconical_level
:
4
canonical_size
:
224
min_level
:
2
max_level
:
5
box_resolution
:
14
sampling_ratio
:
2
CascadeBBoxAssigner
:
batch_size_per_im
:
512
bbox_reg_weights
:
[
10
,
20
,
30
]
bg_thresh_lo
:
[
0.0
,
0.0
,
0.0
]
bg_thresh_hi
:
[
0.5
,
0.6
,
0.7
]
fg_thresh
:
[
0.5
,
0.6
,
0.7
]
fg_fraction
:
0.25
class_aware
:
True
CascadeBBoxHead
:
head
:
CascadeTwoFCHead
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
CascadeTwoFCHead
:
mlp_dim
:
1024
MultiScaleTEST
:
score_thresh
:
0.05
nms_thresh
:
0.5
detections_per_im
:
100
enable_voting
:
true
vote_thresh
:
0.9
LearningRate
:
base_lr
:
0.02
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
60000
,
80000
]
-
!LinearWarmup
start_factor
:
0.0
steps
:
2000
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0001
type
:
L2
EvalReader
:
batch_size
:
1
inputs_def
:
fields
:
[
'
image'
,
'
im_info'
,
'
im_id'
,
'
im_shape'
]
multi_scale
:
true
num_scales
:
18
use_flip
:
true
dataset
:
!COCODataSet
dataset_dir
:
dataset/coco
anno_path
:
annotations/instances_val2017.json
image_dir
:
val2017
sample_transforms
:
-
!DecodeImage
to_rgb
:
true
-
!NormalizeImage
is_channel_first
:
false
is_scale
:
true
mean
:
-
0.485
-
0.456
-
0.406
std
:
-
0.229
-
0.224
-
0.225
-
!MultiscaleTestResize
origin_target_size
:
800
origin_max_size
:
1333
target_size
:
-
400
-
500
-
600
-
700
-
900
-
1000
-
1100
-
1200
max_size
:
2000
use_flip
:
true
-
!Permute
channel_first
:
true
to_bgr
:
false
-
!PadMultiScaleTest
pad_to_stride
:
32
worker_num
:
2
docs/MODEL_ZOO.md
浏览文件 @
b351703b
...
...
@@ -65,6 +65,7 @@ The backbone models pretrained on ImageNet are available. All backbone models ar
| SENet154-vd-FPN | Faster | 1 | 1.44x | 3.408 | 42.9 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd_fpn_s1x.tar
)
|
| SENet154-vd-FPN | Mask | 1 | 1.44x | 3.233 | 44.0 | 38.7 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar
)
|
| ResNet101-vd-FPN | CascadeClsAware Faster | 2 | 1x | - | 44.7(softnms) | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms.tar
)
|
| ResNet101-vd-FPN | CascadeClsAware Faster | 2 | 1x | - | 46.5(multi-scale test) | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms.tar
)
|
### Deformable ConvNets v2
...
...
docs/MODEL_ZOO_cn.md
浏览文件 @
b351703b
...
...
@@ -62,7 +62,7 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
| SENet154-vd-FPN | Faster | 1 | 1.44x | 3.408 | 42.9 | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd_fpn_s1x.tar
)
|
| SENet154-vd-FPN | Mask | 1 | 1.44x | 3.233 | 44.0 | 38.7 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar
)
|
| ResNet101-vd-FPN | CascadeClsAware Faster | 2 | 1x | - | 44.7(softnms) | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms.tar
)
|
| ResNet101-vd-FPN | CascadeClsAware Faster | 2 | 1x | - | 46.5(multi-scale test) | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms.tar
)
|
### Deformable 卷积网络v2
...
...
ppdet/modeling/architectures/cascade_rcnn.py
浏览文件 @
b351703b
...
...
@@ -187,7 +187,6 @@ class CascadeRCNN(object):
# backbone
body_feats
=
self
.
backbone
(
im
)
result
.
update
(
body_feats
)
body_feat_names
=
list
(
body_feats
.
keys
())
# FPN
if
self
.
fpn
is
not
None
:
...
...
ppdet/modeling/architectures/cascade_rcnn_cls_aware.py
浏览文件 @
b351703b
...
...
@@ -23,8 +23,8 @@ from collections import OrderedDict
import
copy
import
paddle.fluid
as
fluid
from
ppdet.core.workspace
import
register
from
.input_helper
import
multiscale_def
__all__
=
[
'CascadeRCNNClsAware'
]
...
...
@@ -170,6 +170,94 @@ class CascadeRCNNClsAware(object):
self
.
cascade_decoded_box
,
self
.
cascade_bbox_reg_weights
)
return
pred
def
build_multi_scale
(
self
,
feed_vars
):
required_fields
=
[
'image'
,
'im_shape'
,
'im_info'
]
self
.
_input_check
(
required_fields
,
feed_vars
)
result
=
{}
im_shape
=
feed_vars
[
'im_shape'
]
result
[
'im_shape'
]
=
im_shape
for
i
in
range
(
len
(
self
.
im_info_names
)
//
2
):
im
=
feed_vars
[
self
.
im_info_names
[
2
*
i
]]
im_info
=
feed_vars
[
self
.
im_info_names
[
2
*
i
+
1
]]
# backbone
body_feats
=
self
.
backbone
(
im
)
result
.
update
(
body_feats
)
# FPN
if
self
.
fpn
is
not
None
:
body_feats
,
spatial_scale
=
self
.
fpn
.
get_output
(
body_feats
)
# rpn proposals
rpn_rois
=
self
.
rpn_head
.
get_proposals
(
body_feats
,
im_info
,
mode
=
"test"
)
proposal_list
=
[]
roi_feat_list
=
[]
rcnn_pred_list
=
[]
rcnn_target_list
=
[]
bbox_pred
=
None
self
.
cascade_var_v
=
[]
for
stage
in
range
(
3
):
var_v
=
np
.
array
(
self
.
cascade_bbox_reg_weights
[
stage
],
dtype
=
"float32"
)
prior_box_var
=
fluid
.
layers
.
create_tensor
(
dtype
=
"float32"
)
fluid
.
layers
.
assign
(
input
=
var_v
,
output
=
prior_box_var
)
self
.
cascade_var_v
.
append
(
prior_box_var
)
self
.
cascade_decoded_box
=
[]
self
.
cascade_cls_prob
=
[]
for
stage
in
range
(
3
):
if
stage
>
0
:
pool_rois
=
decoded_assign_box
else
:
pool_rois
=
rpn_rois
# extract roi features
roi_feat
=
self
.
roi_extractor
(
body_feats
,
pool_rois
,
spatial_scale
)
roi_feat_list
.
append
(
roi_feat
)
# bbox head
cls_score
,
bbox_pred
=
self
.
bbox_head
.
get_output
(
roi_feat
,
cls_agnostic_bbox_reg
=
self
.
bbox_head
.
num_classes
,
wb_scalar
=
1.0
/
self
.
cascade_rcnn_loss_weight
[
stage
],
name
=
'_'
+
str
(
stage
+
1
))
cls_prob
=
fluid
.
layers
.
softmax
(
cls_score
,
use_cudnn
=
False
)
decoded_box
,
decoded_assign_box
=
fluid
.
layers
.
box_decoder_and_assign
(
pool_rois
,
self
.
cascade_var_v
[
stage
],
bbox_pred
,
cls_prob
,
self
.
bbox_clip
)
self
.
cascade_cls_prob
.
append
(
cls_prob
)
self
.
cascade_decoded_box
.
append
(
decoded_box
)
rcnn_pred_list
.
append
((
cls_score
,
bbox_pred
))
pred
=
self
.
bbox_head
.
get_prediction_cls_aware
(
im_info
,
im_shape
,
self
.
cascade_cls_prob
,
self
.
cascade_decoded_box
,
self
.
cascade_bbox_reg_weights
,
return_box_score
=
True
)
bbox_name
=
'bbox_'
+
str
(
i
)
score_name
=
'score_'
+
str
(
i
)
if
'flip'
in
im
.
name
:
bbox_name
+=
'_flip'
score_name
+=
'_flip'
result
[
bbox_name
]
=
pred
[
'bbox'
]
result
[
score_name
]
=
pred
[
'score'
]
return
result
def
_inputs_def
(
self
,
image_shape
):
im_shape
=
[
None
]
+
image_shape
# yapf: disable
...
...
@@ -192,9 +280,20 @@ class CascadeRCNNClsAware(object):
'image'
,
'im_info'
,
'im_id'
,
'gt_bbox'
,
'gt_class'
,
'is_crowd'
,
'gt_mask'
],
multi_scale
=
False
,
num_scales
=-
1
,
use_flip
=
None
,
use_dataloader
=
True
,
iterable
=
False
):
inputs_def
=
self
.
_inputs_def
(
image_shape
)
fields
=
copy
.
deepcopy
(
fields
)
if
multi_scale
:
ms_def
,
ms_fields
=
multiscale_def
(
image_shape
,
num_scales
,
use_flip
)
inputs_def
.
update
(
ms_def
)
fields
+=
ms_fields
self
.
im_info_names
=
[
'image'
,
'im_info'
]
+
ms_fields
feed_vars
=
OrderedDict
([(
key
,
fluid
.
data
(
name
=
key
,
shape
=
inputs_def
[
key
][
'shape'
],
...
...
@@ -207,10 +306,17 @@ class CascadeRCNNClsAware(object):
iterable
=
iterable
)
if
use_dataloader
else
None
return
feed_vars
,
loader
def
_input_check
(
self
,
require_fields
,
feed_vars
):
for
var
in
require_fields
:
assert
var
in
feed_vars
,
\
"{} has no {} field"
.
format
(
feed_vars
,
var
)
def
train
(
self
,
feed_vars
):
return
self
.
build
(
feed_vars
,
'train'
)
def
eval
(
self
,
feed_vars
):
def
eval
(
self
,
feed_vars
,
multi_scale
=
None
):
if
multi_scale
:
return
self
.
build_multi_scale
(
feed_vars
)
return
self
.
build
(
feed_vars
,
'test'
)
def
test
(
self
,
feed_vars
):
...
...
ppdet/modeling/roi_heads/cascade_head.py
浏览文件 @
b351703b
...
...
@@ -220,8 +220,13 @@ class CascadeBBoxHead(object):
pred_result
=
self
.
nms
(
bboxes
=
box_out
,
scores
=
boxes_cls_prob_mean
)
return
{
"bbox"
:
pred_result
}
def
get_prediction_cls_aware
(
self
,
im_info
,
im_shape
,
cascade_cls_prob
,
cascade_decoded_box
,
cascade_bbox_reg_weights
):
def
get_prediction_cls_aware
(
self
,
im_info
,
im_shape
,
cascade_cls_prob
,
cascade_decoded_box
,
cascade_bbox_reg_weights
,
return_box_score
=
False
):
'''
get_prediction_cls_aware: predict bbox for each class
'''
...
...
@@ -247,6 +252,8 @@ class CascadeBBoxHead(object):
decoded_bbox
,
shape
=
(
-
1
,
self
.
num_classes
,
4
))
box_out
=
fluid
.
layers
.
box_clip
(
input
=
decoded_bbox
,
im_info
=
im_shape
)
if
return_box_score
:
return
{
'bbox'
:
box_out
,
'score'
:
sum_cascade_cls_prob
}
pred_result
=
self
.
nms
(
bboxes
=
box_out
,
scores
=
sum_cascade_cls_prob
)
return
{
"bbox"
:
pred_result
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录