rpn_head.py 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal
from paddle.regularizer import L2Decay

from ppdet.core.workspace import register
from ppdet.modeling import ops

from .anchor_generator import AnchorGenerator
from .target_layer import RPNTargetAssign
from .proposal_generator import ProposalGenerator


class RPNFeat(nn.Layer):
W
wangguanzhong 已提交
30 31 32 33 34 35 36 37 38
    """
    Feature extraction in RPN head

    Args:
        in_channel (int): Input channel
        out_channel (int): Output channel
    """

    def __init__(self, in_channel=1024, out_channel=1024):
39 40 41
        super(RPNFeat, self).__init__()
        # rpn feat is shared with each level
        self.rpn_conv = nn.Conv2D(
W
wangguanzhong 已提交
42 43
            in_channels=in_channel,
            out_channels=out_channel,
44 45 46 47
            kernel_size=3,
            padding=1,
            weight_attr=paddle.ParamAttr(initializer=Normal(
                mean=0., std=0.01)))
G
Guanghua Yu 已提交
48
        self.rpn_conv.skip_quant = True
49 50 51 52 53 54 55 56 57 58

    def forward(self, feats):
        rpn_feats = []
        for feat in feats:
            rpn_feats.append(F.relu(self.rpn_conv(feat)))
        return rpn_feats


@register
class RPNHead(nn.Layer):
W
wangguanzhong 已提交
59 60 61 62 63 64
    """
    Region Proposal Network

    Args:
        anchor_generator (dict): configure of anchor generation
        rpn_target_assign (dict): configure of rpn targets assignment
C
cnn 已提交
65
        train_proposal (dict): configure of proposals generation
W
wangguanzhong 已提交
66 67 68
            at the stage of training
        test_proposal (dict): configure of proposals generation
            at the stage of prediction
C
cnn 已提交
69
        in_channel (int): channel of input feature maps which can be
W
wangguanzhong 已提交
70 71 72
            derived by from_config
    """

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    def __init__(self,
                 anchor_generator=AnchorGenerator().__dict__,
                 rpn_target_assign=RPNTargetAssign().__dict__,
                 train_proposal=ProposalGenerator(12000, 2000).__dict__,
                 test_proposal=ProposalGenerator().__dict__,
                 in_channel=1024):
        super(RPNHead, self).__init__()
        self.anchor_generator = anchor_generator
        self.rpn_target_assign = rpn_target_assign
        self.train_proposal = train_proposal
        self.test_proposal = test_proposal
        if isinstance(anchor_generator, dict):
            self.anchor_generator = AnchorGenerator(**anchor_generator)
        if isinstance(rpn_target_assign, dict):
            self.rpn_target_assign = RPNTargetAssign(**rpn_target_assign)
        if isinstance(train_proposal, dict):
            self.train_proposal = ProposalGenerator(**train_proposal)
        if isinstance(test_proposal, dict):
            self.test_proposal = ProposalGenerator(**test_proposal)

        num_anchors = self.anchor_generator.num_anchors
        self.rpn_feat = RPNFeat(in_channel, in_channel)
        # rpn head is shared with each level
        # rpn roi classification scores
        self.rpn_rois_score = nn.Conv2D(
            in_channels=in_channel,
            out_channels=num_anchors,
            kernel_size=1,
            padding=0,
            weight_attr=paddle.ParamAttr(initializer=Normal(
                mean=0., std=0.01)))
G
Guanghua Yu 已提交
104
        self.rpn_rois_score.skip_quant = True
105 106 107 108 109 110 111 112 113

        # rpn roi bbox regression deltas
        self.rpn_rois_delta = nn.Conv2D(
            in_channels=in_channel,
            out_channels=4 * num_anchors,
            kernel_size=1,
            padding=0,
            weight_attr=paddle.ParamAttr(initializer=Normal(
                mean=0., std=0.01)))
G
Guanghua Yu 已提交
114
        self.rpn_rois_delta.skip_quant = True
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

    @classmethod
    def from_config(cls, cfg, input_shape):
        # FPN share same rpn head
        if isinstance(input_shape, (list, tuple)):
            input_shape = input_shape[0]
        return {'in_channel': input_shape.channels}

    def forward(self, feats, inputs):
        rpn_feats = self.rpn_feat(feats)
        scores = []
        deltas = []

        for rpn_feat in rpn_feats:
            rrs = self.rpn_rois_score(rpn_feat)
            rrd = self.rpn_rois_delta(rpn_feat)
            scores.append(rrs)
            deltas.append(rrd)

        anchors = self.anchor_generator(rpn_feats)

G
Guanghua Yu 已提交
136 137
        # TODO: Fix batch_size > 1 when testing.
        if self.training:
138
            batch_size = inputs['im_shape'].shape[0]
G
Guanghua Yu 已提交
139 140 141 142 143
        else:
            batch_size = 1

        rois, rois_num = self._gen_proposal(scores, deltas, anchors, inputs,
                                            batch_size)
144 145 146 147 148 149
        if self.training:
            loss = self.get_loss(scores, deltas, anchors, inputs)
            return rois, rois_num, loss
        else:
            return rois, rois_num, None

G
Guanghua Yu 已提交
150
    def _gen_proposal(self, scores, bbox_deltas, anchors, inputs, batch_size):
151
        """
G
Guanghua Yu 已提交
152
        scores (list[Tensor]): Multi-level scores prediction
153
        bbox_deltas (list[Tensor]): Multi-level deltas prediction
G
Guanghua Yu 已提交
154
        anchors (list[Tensor]): Multi-level anchors
155 156 157 158
        inputs (dict): ground truth info
        """
        prop_gen = self.train_proposal if self.training else self.test_proposal
        im_shape = inputs['im_shape']
C
cnn 已提交
159 160 161 162 163 164

        # Collect multi-level proposals for each batch
        # Get 'topk' of them as final output
        bs_rois_collect = []
        bs_rois_num_collect = []

165 166
        # Generate proposals for each level and each batch.
        # Discard batch-computing to avoid sorting bbox cross different batches.
C
cnn 已提交
167 168 169 170 171 172 173
        for i in range(batch_size):
            rpn_rois_list = []
            rpn_prob_list = []
            rpn_rois_num_list = []

            for rpn_score, rpn_delta, anchor in zip(scores, bbox_deltas,
                                                    anchors):
174 175 176 177 178 179
                rpn_rois, rpn_rois_prob, rpn_rois_num, post_nms_top_n = prop_gen(
                    scores=rpn_score[i:i + 1],
                    bbox_deltas=rpn_delta[i:i + 1],
                    anchors=anchor,
                    im_shape=im_shape[i:i + 1])
                if rpn_rois.shape[0] > 0:
C
cnn 已提交
180 181 182 183
                    rpn_rois_list.append(rpn_rois)
                    rpn_prob_list.append(rpn_rois_prob)
                    rpn_rois_num_list.append(rpn_rois_num)

184
            if len(scores) > 1:
C
cnn 已提交
185 186 187
                rpn_rois = paddle.concat(rpn_rois_list)
                rpn_prob = paddle.concat(rpn_prob_list).flatten()

188 189 190 191 192 193 194
                if rpn_prob.shape[0] > post_nms_top_n:
                    topk_prob, topk_inds = paddle.topk(rpn_prob, post_nms_top_n)
                    topk_rois = paddle.gather(rpn_rois, topk_inds)
                else:
                    topk_rois = rpn_rois
                    topk_prob = rpn_prob
            else:
C
cnn 已提交
195 196 197 198 199 200 201
                topk_rois = rpn_rois_list[0]
                topk_prob = rpn_prob_list[0].flatten()

            bs_rois_collect.append(topk_rois)
            bs_rois_num_collect.append(paddle.shape(topk_rois)[0])

        bs_rois_num_collect = paddle.concat(bs_rois_num_collect)
W
wangguanzhong 已提交
202

C
cnn 已提交
203
        return bs_rois_collect, bs_rois_num_collect
204 205 206

    def get_loss(self, pred_scores, pred_deltas, anchors, inputs):
        """
C
cnn 已提交
207
        pred_scores (list[Tensor]): Multi-level scores prediction
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        pred_deltas (list[Tensor]): Multi-level deltas prediction
        anchors (list[Tensor]): Multi-level anchors
        inputs (dict): ground truth info, including im, gt_bbox, gt_score
        """
        anchors = [paddle.reshape(a, shape=(-1, 4)) for a in anchors]
        anchors = paddle.concat(anchors)

        scores = [
            paddle.reshape(
                paddle.transpose(
                    v, perm=[0, 2, 3, 1]),
                shape=(v.shape[0], -1, 1)) for v in pred_scores
        ]
        scores = paddle.concat(scores, axis=1)

        deltas = [
            paddle.reshape(
                paddle.transpose(
                    v, perm=[0, 2, 3, 1]),
                shape=(v.shape[0], -1, 4)) for v in pred_deltas
        ]
        deltas = paddle.concat(deltas, axis=1)

        score_tgt, bbox_tgt, loc_tgt, norm = self.rpn_target_assign(inputs,
                                                                    anchors)

        scores = paddle.reshape(x=scores, shape=(-1, ))
        deltas = paddle.reshape(x=deltas, shape=(-1, 4))

        score_tgt = paddle.concat(score_tgt)
        score_tgt.stop_gradient = True

        pos_mask = score_tgt == 1
        pos_ind = paddle.nonzero(pos_mask)

        valid_mask = score_tgt >= 0
        valid_ind = paddle.nonzero(valid_mask)

        # cls loss
247 248 249 250 251 252 253 254
        if valid_ind.shape[0] == 0:
            loss_rpn_cls = paddle.zeros([1], dtype='float32')
        else:
            score_pred = paddle.gather(scores, valid_ind)
            score_label = paddle.gather(score_tgt, valid_ind).cast('float32')
            score_label.stop_gradient = True
            loss_rpn_cls = F.binary_cross_entropy_with_logits(
                logit=score_pred, label=score_label, reduction="sum")
255 256

        # reg loss
257 258 259 260 261 262 263 264
        if pos_ind.shape[0] == 0:
            loss_rpn_reg = paddle.zeros([1], dtype='float32')
        else:
            loc_pred = paddle.gather(deltas, pos_ind)
            loc_tgt = paddle.concat(loc_tgt)
            loc_tgt = paddle.gather(loc_tgt, pos_ind)
            loc_tgt.stop_gradient = True
            loss_rpn_reg = paddle.abs(loc_pred - loc_tgt).sum()
265 266 267 268
        return {
            'loss_rpn_cls': loss_rpn_cls / norm,
            'loss_rpn_reg': loss_rpn_reg / norm
        }