Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
988574fe
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
988574fe
编写于
3月 30, 2021
作者:
W
wangguanzhong
提交者:
GitHub
3月 30, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add coments for rcnn (#2461)
上级
10d13c43
变更
21
隐藏空白更改
内联
并排
Showing
21 changed file
with
345 addition
and
214 deletion
+345
-214
configs/cascade_rcnn/_base_/cascade_mask_rcnn_r50_fpn.yml
configs/cascade_rcnn/_base_/cascade_mask_rcnn_r50_fpn.yml
+2
-2
configs/cascade_rcnn/_base_/cascade_rcnn_r50_fpn.yml
configs/cascade_rcnn/_base_/cascade_rcnn_r50_fpn.yml
+1
-1
configs/faster_rcnn/_base_/faster_rcnn_r50_fpn.yml
configs/faster_rcnn/_base_/faster_rcnn_r50_fpn.yml
+1
-1
configs/gn/cascade_mask_rcnn_r50_fpn_gn_2x_coco.yml
configs/gn/cascade_mask_rcnn_r50_fpn_gn_2x_coco.yml
+2
-2
configs/gn/cascade_rcnn_r50_fpn_gn_2x_coco.yml
configs/gn/cascade_rcnn_r50_fpn_gn_2x_coco.yml
+1
-1
configs/gn/faster_rcnn_r50_fpn_gn_2x_coco.yml
configs/gn/faster_rcnn_r50_fpn_gn_2x_coco.yml
+1
-1
configs/gn/mask_rcnn_r50_fpn_gn_2x_coco.yml
configs/gn/mask_rcnn_r50_fpn_gn_2x_coco.yml
+2
-2
configs/hrnet/_base_/faster_rcnn_hrnetv2p_w18.yml
configs/hrnet/_base_/faster_rcnn_hrnetv2p_w18.yml
+1
-1
configs/mask_rcnn/_base_/mask_rcnn_r50.yml
configs/mask_rcnn/_base_/mask_rcnn_r50.yml
+1
-1
configs/mask_rcnn/_base_/mask_rcnn_r50_fpn.yml
configs/mask_rcnn/_base_/mask_rcnn_r50_fpn.yml
+2
-2
ppdet/modeling/heads/bbox_head.py
ppdet/modeling/heads/bbox_head.py
+49
-35
ppdet/modeling/heads/cascade_head.py
ppdet/modeling/heads/cascade_head.py
+50
-25
ppdet/modeling/heads/mask_head.py
ppdet/modeling/heads/mask_head.py
+39
-17
ppdet/modeling/heads/roi_extractor.py
ppdet/modeling/heads/roi_extractor.py
+25
-0
ppdet/modeling/heads/rpn_head.py
ppdet/modeling/heads/rpn_head.py
+0
-115
ppdet/modeling/necks/fpn.py
ppdet/modeling/necks/fpn.py
+31
-3
ppdet/modeling/proposal_generator/anchor_generator.py
ppdet/modeling/proposal_generator/anchor_generator.py
+18
-0
ppdet/modeling/proposal_generator/proposal_generator.py
ppdet/modeling/proposal_generator/proposal_generator.py
+22
-0
ppdet/modeling/proposal_generator/rpn_head.py
ppdet/modeling/proposal_generator/rpn_head.py
+25
-3
ppdet/modeling/proposal_generator/target.py
ppdet/modeling/proposal_generator/target.py
+7
-0
ppdet/modeling/proposal_generator/target_layer.py
ppdet/modeling/proposal_generator/target_layer.py
+65
-2
未找到文件。
configs/cascade_rcnn/_base_/cascade_mask_rcnn_r50_fpn.yml
浏览文件 @
988574fe
...
...
@@ -64,7 +64,7 @@ BBoxAssigner:
use_random
:
True
CascadeTwoFCHead
:
mlp_dim
:
1024
out_channel
:
1024
BBoxPostProcess
:
decode
:
...
...
@@ -88,7 +88,7 @@ MaskHead:
MaskFeat
:
num_convs
:
4
out_channel
s
:
256
out_channel
:
256
MaskAssigner
:
mask_resolution
:
28
...
...
configs/cascade_rcnn/_base_/cascade_rcnn_r50_fpn.yml
浏览文件 @
988574fe
...
...
@@ -62,7 +62,7 @@ BBoxAssigner:
use_random
:
True
CascadeTwoFCHead
:
mlp_dim
:
1024
out_channel
:
1024
BBoxPostProcess
:
decode
:
...
...
configs/faster_rcnn/_base_/faster_rcnn_r50_fpn.yml
浏览文件 @
988574fe
...
...
@@ -61,7 +61,7 @@ BBoxAssigner:
use_random
:
True
TwoFCHead
:
mlp_dim
:
1024
out_channel
:
1024
BBoxPostProcess
:
...
...
configs/gn/cascade_mask_rcnn_r50_fpn_gn_2x_coco.yml
浏览文件 @
988574fe
...
...
@@ -31,7 +31,7 @@ CascadeHead:
CascadeXConvNormHead
:
num_convs
:
4
mlp_dim
:
1024
out_channel
:
1024
norm_type
:
gn
MaskHead
:
...
...
@@ -45,7 +45,7 @@ MaskHead:
MaskFeat
:
num_convs
:
4
out_channel
s
:
256
out_channel
:
256
norm_type
:
gn
...
...
configs/gn/cascade_rcnn_r50_fpn_gn_2x_coco.yml
浏览文件 @
988574fe
...
...
@@ -21,7 +21,7 @@ CascadeHead:
CascadeXConvNormHead
:
num_convs
:
4
mlp_dim
:
1024
out_channel
:
1024
norm_type
:
gn
...
...
configs/gn/faster_rcnn_r50_fpn_gn_2x_coco.yml
浏览文件 @
988574fe
...
...
@@ -29,7 +29,7 @@ BBoxHead:
XConvNormHead
:
num_convs
:
4
mlp_dim
:
1024
out_channel
:
1024
norm_type
:
gn
...
...
configs/gn/mask_rcnn_r50_fpn_gn_2x_coco.yml
浏览文件 @
988574fe
...
...
@@ -31,7 +31,7 @@ BBoxHead:
XConvNormHead
:
num_convs
:
4
mlp_dim
:
1024
out_channel
:
1024
norm_type
:
gn
MaskHead
:
...
...
@@ -45,7 +45,7 @@ MaskHead:
MaskFeat
:
num_convs
:
4
out_channel
s
:
256
out_channel
:
256
norm_type
:
gn
...
...
configs/hrnet/_base_/faster_rcnn_hrnetv2p_w18.yml
浏览文件 @
988574fe
...
...
@@ -57,7 +57,7 @@ BBoxAssigner:
use_random
:
True
TwoFCHead
:
mlp_dim
:
1024
out_channel
:
1024
BBoxPostProcess
:
decode
:
RCNNBox
...
...
configs/mask_rcnn/_base_/mask_rcnn_r50.yml
浏览文件 @
988574fe
...
...
@@ -78,7 +78,7 @@ MaskHead:
MaskFeat
:
num_convs
:
0
out_channel
s
:
256
out_channel
:
256
MaskAssigner
:
mask_resolution
:
14
...
...
configs/mask_rcnn/_base_/mask_rcnn_r50_fpn.yml
浏览文件 @
988574fe
...
...
@@ -61,7 +61,7 @@ BBoxAssigner:
use_random
:
True
TwoFCHead
:
mlp_dim
:
1024
out_channel
:
1024
BBoxPostProcess
:
decode
:
RCNNBox
...
...
@@ -82,7 +82,7 @@ MaskHead:
MaskFeat
:
num_convs
:
4
out_channel
s
:
256
out_channel
:
256
MaskAssigner
:
mask_resolution
:
28
...
...
ppdet/modeling/heads/bbox_head.py
浏览文件 @
988574fe
...
...
@@ -31,31 +31,40 @@ __all__ = ['TwoFCHead', 'XConvNormHead', 'BBoxHead']
@
register
class
TwoFCHead
(
nn
.
Layer
):
def
__init__
(
self
,
in_dim
=
256
,
mlp_dim
=
1024
,
resolution
=
7
):
"""
RCNN bbox head with Two fc layers to extract feature
Args:
in_channel (int): Input channel which can be derived by from_config
out_channel (int): Output channel
resolution (int): Resolution of input feature map, default 7
"""
def
__init__
(
self
,
in_channel
=
256
,
out_channel
=
1024
,
resolution
=
7
):
super
(
TwoFCHead
,
self
).
__init__
()
self
.
in_
dim
=
in_dim
self
.
mlp_dim
=
mlp_dim
fan
=
in_
dim
*
resolution
*
resolution
self
.
in_
channel
=
in_channel
self
.
out_channel
=
out_channel
fan
=
in_
channel
*
resolution
*
resolution
self
.
fc6
=
nn
.
Linear
(
in_
dim
*
resolution
*
resolution
,
mlp_dim
,
in_
channel
*
resolution
*
resolution
,
out_channel
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
XavierUniform
(
fan_out
=
fan
)))
self
.
fc7
=
nn
.
Linear
(
mlp_dim
,
mlp_dim
,
out_channel
,
out_channel
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
XavierUniform
()))
@
classmethod
def
from_config
(
cls
,
cfg
,
input_shape
):
s
=
input_shape
s
=
s
[
0
]
if
isinstance
(
s
,
(
list
,
tuple
))
else
s
return
{
'in_
dim
'
:
s
.
channels
}
return
{
'in_
channel
'
:
s
.
channels
}
@
property
def
out_shape
(
self
):
return
[
ShapeSpec
(
channels
=
self
.
mlp_dim
,
)]
return
[
ShapeSpec
(
channels
=
self
.
out_channel
,
)]
def
forward
(
self
,
rois_feat
):
rois_feat
=
paddle
.
flatten
(
rois_feat
,
start_axis
=
1
,
stop_axis
=-
1
)
...
...
@@ -68,34 +77,36 @@ class TwoFCHead(nn.Layer):
@
register
class
XConvNormHead
(
nn
.
Layer
):
__shared__
=
[
'norm_type'
,
'freeze_norm'
]
"""
RCNN bbox head with serveral convolution layers
Args:
in_dim(int): num of channels for the input rois_feat
num_convs(int): num of convolution layers for the rcnn bbox head
conv_dim(int): num of channels for the conv layers
mlp_dim(int): num of channels for the fc layers
resolution(int): resolution of the rois_feat
norm_type(str): norm type, 'gn' by defalut
freeze_norm(bool): whether to freeze the norm
stage_name(str): used in CascadeXConvNormHead, '' by default
in_channel (int): Input channels which can be derived by from_config
num_convs (int): The number of conv layers
conv_dim (int): The number of channels for the conv layers
out_channel (int): Output channels
resolution (int): Resolution of input feature map
norm_type (string): Norm type, bn, gn, sync_bn are available,
default `gn`
freeze_norm (bool): Whether to freeze the norm
stage_name (string): Prefix name for conv layer, '' by default
"""
__shared__
=
[
'norm_type'
,
'freeze_norm'
]
def
__init__
(
self
,
in_
dim
=
256
,
in_
channel
=
256
,
num_convs
=
4
,
conv_dim
=
256
,
mlp_dim
=
1024
,
out_channel
=
1024
,
resolution
=
7
,
norm_type
=
'gn'
,
freeze_norm
=
False
,
stage_name
=
''
):
super
(
XConvNormHead
,
self
).
__init__
()
self
.
in_
dim
=
in_dim
self
.
in_
channel
=
in_channel
self
.
num_convs
=
num_convs
self
.
conv_dim
=
conv_dim
self
.
mlp_dim
=
mlp_dim
self
.
out_channel
=
out_channel
self
.
norm_type
=
norm_type
self
.
freeze_norm
=
freeze_norm
...
...
@@ -103,7 +114,7 @@ class XConvNormHead(nn.Layer):
fan
=
conv_dim
*
3
*
3
initializer
=
KaimingNormal
(
fan_in
=
fan
)
for
i
in
range
(
self
.
num_convs
):
in_c
=
in_
dim
if
i
==
0
else
conv_dim
in_c
=
in_
channel
if
i
==
0
else
conv_dim
head_conv_name
=
stage_name
+
'bbox_head_conv{}'
.
format
(
i
)
head_conv
=
self
.
add_sublayer
(
head_conv_name
,
...
...
@@ -122,7 +133,7 @@ class XConvNormHead(nn.Layer):
fan
=
conv_dim
*
resolution
*
resolution
self
.
fc6
=
nn
.
Linear
(
conv_dim
*
resolution
*
resolution
,
mlp_dim
,
out_channel
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
XavierUniform
(
fan_out
=
fan
)),
bias_attr
=
paddle
.
ParamAttr
(
...
...
@@ -132,11 +143,11 @@ class XConvNormHead(nn.Layer):
def
from_config
(
cls
,
cfg
,
input_shape
):
s
=
input_shape
s
=
s
[
0
]
if
isinstance
(
s
,
(
list
,
tuple
))
else
s
return
{
'in_
dim
'
:
s
.
channels
}
return
{
'in_
channel
'
:
s
.
channels
}
@
property
def
out_shape
(
self
):
return
[
ShapeSpec
(
channels
=
self
.
mlp_dim
,
)]
return
[
ShapeSpec
(
channels
=
self
.
out_channel
,
)]
def
forward
(
self
,
rois_feat
):
for
i
in
range
(
self
.
num_convs
):
...
...
@@ -151,14 +162,17 @@ class BBoxHead(nn.Layer):
__shared__
=
[
'num_classes'
]
__inject__
=
[
'bbox_assigner'
]
"""
head (nn.Layer): Extract feature in bbox head
in_channel (int): Input channel after RoI extractor
roi_extractor (object): The module of RoI Extractor
bbox_assigner (object): The module of Box Assigner, label and sample the
box.
with_pool (bool): Whether to use pooling for the RoI feature.
num_classes (int): The number of classes
bbox_weight (List[float]): The weight to get the decode box
RCNN bbox head
Args:
head (nn.Layer): Extract feature in bbox head
in_channel (int): Input channel after RoI extractor
roi_extractor (object): The module of RoI Extractor
bbox_assigner (object): The module of Box Assigner, label and sample the
box.
with_pool (bool): Whether to use pooling for the RoI feature.
num_classes (int): The number of classes
bbox_weight (List[float]): The weight to get the decode box
"""
def
__init__
(
self
,
...
...
ppdet/modeling/heads/cascade_head.py
浏览文件 @
988574fe
...
...
@@ -32,32 +32,41 @@ __all__ = ['CascadeTwoFCHead', 'CascadeXConvNormHead', 'CascadeHead']
@
register
class
CascadeTwoFCHead
(
nn
.
Layer
):
__shared__
=
[
'num_cascade_stage'
]
"""
Cascade RCNN bbox head with Two fc layers to extract feature
Args:
in_channel (int): Input channel which can be derived by from_config
out_channel (int): Output channel
resolution (int): Resolution of input feature map, default 7
num_cascade_stage (int): The number of cascade stage, default 3
"""
def
__init__
(
self
,
in_
dim
=
256
,
mlp_dim
=
1024
,
in_
channel
=
256
,
out_channel
=
1024
,
resolution
=
7
,
num_cascade_stage
=
3
):
super
(
CascadeTwoFCHead
,
self
).
__init__
()
self
.
in_
dim
=
in_dim
self
.
mlp_dim
=
mlp_dim
self
.
in_
channel
=
in_channel
self
.
out_channel
=
out_channel
self
.
head_list
=
[]
for
stage
in
range
(
num_cascade_stage
):
head_per_stage
=
self
.
add_sublayer
(
str
(
stage
),
TwoFCHead
(
in_
dim
,
mlp_dim
,
resolution
))
str
(
stage
),
TwoFCHead
(
in_
channel
,
out_channel
,
resolution
))
self
.
head_list
.
append
(
head_per_stage
)
@
classmethod
def
from_config
(
cls
,
cfg
,
input_shape
):
s
=
input_shape
s
=
s
[
0
]
if
isinstance
(
s
,
(
list
,
tuple
))
else
s
return
{
'in_
dim
'
:
s
.
channels
}
return
{
'in_
channel
'
:
s
.
channels
}
@
property
def
out_shape
(
self
):
return
[
ShapeSpec
(
channels
=
self
.
mlp_dim
,
)]
return
[
ShapeSpec
(
channels
=
self
.
out_channel
,
)]
def
forward
(
self
,
rois_feat
,
stage
=
0
):
out
=
self
.
head_list
[
stage
](
rois_feat
)
...
...
@@ -67,29 +76,43 @@ class CascadeTwoFCHead(nn.Layer):
@
register
class
CascadeXConvNormHead
(
nn
.
Layer
):
__shared__
=
[
'norm_type'
,
'freeze_norm'
,
'num_cascade_stage'
]
"""
Cascade RCNN bbox head with serveral convolution layers
Args:
in_channel (int): Input channels which can be derived by from_config
num_convs (int): The number of conv layers
conv_dim (int): The number of channels for the conv layers
out_channel (int): Output channels
resolution (int): Resolution of input feature map
norm_type (string): Norm type, bn, gn, sync_bn are available,
default `gn`
freeze_norm (bool): Whether to freeze the norm
num_cascade_stage (int): The number of cascade stage, default 3
"""
def
__init__
(
self
,
in_
dim
=
256
,
in_
channel
=
256
,
num_convs
=
4
,
conv_dim
=
256
,
mlp_dim
=
1024
,
out_channel
=
1024
,
resolution
=
7
,
norm_type
=
'gn'
,
freeze_norm
=
False
,
num_cascade_stage
=
3
):
super
(
CascadeXConvNormHead
,
self
).
__init__
()
self
.
in_
dim
=
in_dim
self
.
mlp_dim
=
mlp_dim
self
.
in_
channel
=
in_channel
self
.
out_channel
=
out_channel
self
.
head_list
=
[]
for
stage
in
range
(
num_cascade_stage
):
head_per_stage
=
self
.
add_sublayer
(
str
(
stage
),
XConvNormHead
(
in_
dim
,
in_
channel
,
num_convs
,
conv_dim
,
mlp_dim
,
out_channel
,
resolution
,
norm_type
,
freeze_norm
,
...
...
@@ -100,11 +123,11 @@ class CascadeXConvNormHead(nn.Layer):
def
from_config
(
cls
,
cfg
,
input_shape
):
s
=
input_shape
s
=
s
[
0
]
if
isinstance
(
s
,
(
list
,
tuple
))
else
s
return
{
'in_
dim
'
:
s
.
channels
}
return
{
'in_
channel
'
:
s
.
channels
}
@
property
def
out_shape
(
self
):
return
[
ShapeSpec
(
channels
=
self
.
mlp_dim
,
)]
return
[
ShapeSpec
(
channels
=
self
.
out_channel
,
)]
def
forward
(
self
,
rois_feat
,
stage
=
0
):
out
=
self
.
head_list
[
stage
](
rois_feat
)
...
...
@@ -116,16 +139,18 @@ class CascadeHead(BBoxHead):
__shared__
=
[
'num_classes'
,
'num_cascade_stages'
]
__inject__
=
[
'bbox_assigner'
]
"""
head (nn.Layer): Extract feature in bbox head
in_channel (int): Input channel after RoI extractor
roi_extractor (object): The module of RoI Extractor
bbox_assigner (object): The module of Box Assigner, label and sample the
box.
num_classes (int): The number of classes
bbox_weight (List[List[float]]): The weight to get the decode box and the
length of weight is the number of cascade
stage
num_cascade_stages (int): THe number of stage to refine the box
Cascade RCNN bbox head
Args:
head (nn.Layer): Extract feature in bbox head
in_channel (int): Input channel after RoI extractor
roi_extractor (object): The module of RoI Extractor
bbox_assigner (object): The module of Box Assigner, label and sample the
box.
num_classes (int): The number of classes
bbox_weight (List[List[float]]): The weight to get the decode box and the
length of weight is the number of cascade stage
num_cascade_stages (int): THe number of stage to refine the box
"""
def
__init__
(
self
,
...
...
ppdet/modeling/heads/mask_head.py
浏览文件 @
988574fe
...
...
@@ -27,18 +27,29 @@ from .roi_extractor import RoIAlign
@
register
class
MaskFeat
(
nn
.
Layer
):
"""
Feature extraction in Mask head
Args:
in_channel (int): Input channels
out_channel (int): Output channels
num_convs (int): The number of conv layers, default 4
norm_type (string | None): Norm type, bn, gn, sync_bn are available,
default None
"""
def
__init__
(
self
,
in_channel
=
256
,
out_channel
=
256
,
num_convs
=
4
,
in_channels
=
256
,
out_channels
=
256
,
norm_type
=
None
):
super
(
MaskFeat
,
self
).
__init__
()
self
.
num_convs
=
num_convs
self
.
in_channel
s
=
in_channels
self
.
out_channel
s
=
out_channels
self
.
in_channel
=
in_channel
self
.
out_channel
=
out_channel
self
.
norm_type
=
norm_type
fan_conv
=
out_channel
s
*
3
*
3
fan_deconv
=
out_channel
s
*
2
*
2
fan_conv
=
out_channel
*
3
*
3
fan_deconv
=
out_channel
*
2
*
2
mask_conv
=
nn
.
Sequential
()
if
norm_type
==
'gn'
:
...
...
@@ -47,8 +58,8 @@ class MaskFeat(nn.Layer):
mask_conv
.
add_sublayer
(
conv_name
,
ConvNormLayer
(
ch_in
=
in_channel
s
if
i
==
0
else
out_channels
,
ch_out
=
out_channel
s
,
ch_in
=
in_channel
if
i
==
0
else
out_channel
,
ch_out
=
out_channel
,
filter_size
=
3
,
stride
=
1
,
norm_type
=
self
.
norm_type
,
...
...
@@ -62,8 +73,8 @@ class MaskFeat(nn.Layer):
mask_conv
.
add_sublayer
(
conv_name
,
nn
.
Conv2D
(
in_channels
=
in_channel
s
if
i
==
0
else
out_channels
,
out_channels
=
out_channel
s
,
in_channels
=
in_channel
if
i
==
0
else
out_channel
,
out_channels
=
out_channel
,
kernel_size
=
3
,
padding
=
1
,
weight_attr
=
paddle
.
ParamAttr
(
...
...
@@ -72,8 +83,8 @@ class MaskFeat(nn.Layer):
mask_conv
.
add_sublayer
(
'conv5_mask'
,
nn
.
Conv2DTranspose
(
in_channels
=
self
.
in_channel
s
,
out_channels
=
self
.
out_channel
s
,
in_channels
=
self
.
in_channel
,
out_channels
=
self
.
out_channel
,
kernel_size
=
2
,
stride
=
2
,
weight_attr
=
paddle
.
ParamAttr
(
...
...
@@ -85,10 +96,10 @@ class MaskFeat(nn.Layer):
def
from_config
(
cls
,
cfg
,
input_shape
):
if
isinstance
(
input_shape
,
(
list
,
tuple
)):
input_shape
=
input_shape
[
0
]
return
{
'in_channel
s
'
:
input_shape
.
channels
,
}
return
{
'in_channel'
:
input_shape
.
channels
,
}
def
out_channel
(
self
):
return
self
.
out_channel
s
def
out_channel
s
(
self
):
return
self
.
out_channel
def
forward
(
self
,
feats
):
return
self
.
upsample
(
feats
)
...
...
@@ -98,6 +109,18 @@ class MaskFeat(nn.Layer):
class
MaskHead
(
nn
.
Layer
):
__shared__
=
[
'num_classes'
]
__inject__
=
[
'mask_assigner'
]
"""
RCNN mask head
Args:
head (nn.Layer): Extract feature in mask head
roi_extractor (object): The module of RoI Extractor
mask_assigner (object): The module of Mask Assigner,
label and sample the mask
num_classes (int): The number of classes
share_bbox_feat (bool): Whether to share the feature from bbox head,
default false
"""
def
__init__
(
self
,
head
,
...
...
@@ -112,7 +135,7 @@ class MaskHead(nn.Layer):
if
isinstance
(
roi_extractor
,
dict
):
self
.
roi_extractor
=
RoIAlign
(
**
roi_extractor
)
self
.
head
=
head
self
.
in_channels
=
head
.
out_channel
()
self
.
in_channels
=
head
.
out_channel
s
()
self
.
mask_assigner
=
mask_assigner
self
.
share_bbox_feat
=
share_bbox_feat
self
.
bbox_head
=
None
...
...
@@ -159,7 +182,6 @@ class MaskHead(nn.Layer):
rois_num (Tensor): The number of proposals for each batch
inputs (dict): ground truth info
"""
#assert self.bbox_head
tgt_labels
,
_
,
tgt_gt_inds
=
targets
rois
,
rois_num
,
tgt_classes
,
tgt_masks
,
mask_index
,
tgt_weights
=
self
.
mask_assigner
(
rois
,
tgt_labels
,
tgt_gt_inds
,
inputs
)
...
...
ppdet/modeling/heads/roi_extractor.py
浏览文件 @
988574fe
...
...
@@ -25,6 +25,31 @@ def _to_list(v):
@
register
class
RoIAlign
(
object
):
"""
RoI Align module
For more details, please refer to the document of roi_align in
in ppdet/modeing/ops.py
Args:
resolution (int): The output size, default 14
spatial_scale (float): Multiplicative spatial scale factor to translate
ROI coords from their input scale to the scale used when pooling.
default 0.0625
sampling_ratio (int): The number of sampling points in the interpolation
grid, default 0
canconical_level (int): The referring level of FPN layer with
specified level. default 4
canonical_size (int): The referring scale of FPN layer with
specified scale. default 224
start_level (int): The start level of FPN layer to extract RoI feature,
default 0
end_level (int): The end level of FPN layer to extract RoI feature,
default 3
aligned (bool): Whether to add offset to rois' coord in roi_align.
default false
"""
def
__init__
(
self
,
resolution
=
14
,
spatial_scale
=
0.0625
,
...
...
ppdet/modeling/heads/rpn_head.py
已删除
100644 → 0
浏览文件 @
10d13c43
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle
import
ParamAttr
from
paddle.nn.initializer
import
Normal
from
paddle.regularizer
import
L2Decay
from
paddle.nn
import
Conv2D
from
ppdet.core.workspace
import
register
from
ppdet.modeling
import
ops
@
register
class
RPNFeat
(
nn
.
Layer
):
def
__init__
(
self
,
feat_in
=
1024
,
feat_out
=
1024
):
super
(
RPNFeat
,
self
).
__init__
()
# rpn feat is shared with each level
self
.
rpn_conv
=
Conv2D
(
in_channels
=
feat_in
,
out_channels
=
feat_out
,
kernel_size
=
3
,
padding
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
Normal
(
mean
=
0.
,
std
=
0.01
)),
bias_attr
=
ParamAttr
(
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)))
def
forward
(
self
,
inputs
,
feats
):
rpn_feats
=
[]
for
feat
in
feats
:
rpn_feats
.
append
(
F
.
relu
(
self
.
rpn_conv
(
feat
)))
return
rpn_feats
@
register
class
RPNHead
(
nn
.
Layer
):
__inject__
=
[
'rpn_feat'
]
def
__init__
(
self
,
rpn_feat
,
anchor_per_position
=
15
,
rpn_channel
=
1024
):
super
(
RPNHead
,
self
).
__init__
()
self
.
rpn_feat
=
rpn_feat
if
isinstance
(
rpn_feat
,
dict
):
self
.
rpn_feat
=
RPNFeat
(
**
rpn_feat
)
# rpn head is shared with each level
# rpn roi classification scores
self
.
rpn_rois_score
=
Conv2D
(
in_channels
=
rpn_channel
,
out_channels
=
anchor_per_position
,
kernel_size
=
1
,
padding
=
0
,
weight_attr
=
ParamAttr
(
initializer
=
Normal
(
mean
=
0.
,
std
=
0.01
)),
bias_attr
=
ParamAttr
(
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)))
# rpn roi bbox regression deltas
self
.
rpn_rois_delta
=
Conv2D
(
in_channels
=
rpn_channel
,
out_channels
=
4
*
anchor_per_position
,
kernel_size
=
1
,
padding
=
0
,
weight_attr
=
ParamAttr
(
initializer
=
Normal
(
mean
=
0.
,
std
=
0.01
)),
bias_attr
=
ParamAttr
(
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)))
def
forward
(
self
,
inputs
,
feats
):
rpn_feats
=
self
.
rpn_feat
(
inputs
,
feats
)
rpn_head_out
=
[]
for
rpn_feat
in
rpn_feats
:
rrs
=
self
.
rpn_rois_score
(
rpn_feat
)
rrd
=
self
.
rpn_rois_delta
(
rpn_feat
)
rpn_head_out
.
append
((
rrs
,
rrd
))
return
rpn_feats
,
rpn_head_out
def
get_loss
(
self
,
loss_inputs
):
# cls loss
score_tgt
=
paddle
.
cast
(
x
=
loss_inputs
[
'rpn_score_target'
],
dtype
=
'float32'
)
score_tgt
.
stop_gradient
=
True
loss_rpn_cls
=
ops
.
sigmoid_cross_entropy_with_logits
(
input
=
loss_inputs
[
'rpn_score_pred'
],
label
=
score_tgt
)
loss_rpn_cls
=
paddle
.
mean
(
loss_rpn_cls
,
name
=
'loss_rpn_cls'
)
# reg loss
loc_tgt
=
paddle
.
cast
(
x
=
loss_inputs
[
'rpn_rois_target'
],
dtype
=
'float32'
)
loc_tgt
.
stop_gradient
=
True
loss_rpn_reg
=
ops
.
smooth_l1
(
input
=
loss_inputs
[
'rpn_rois_pred'
],
label
=
loc_tgt
,
inside_weight
=
loss_inputs
[
'rpn_rois_weight'
],
outside_weight
=
loss_inputs
[
'rpn_rois_weight'
],
sigma
=
3.0
,
)
loss_rpn_reg
=
paddle
.
sum
(
loss_rpn_reg
)
score_shape
=
paddle
.
shape
(
score_tgt
)
score_shape
=
paddle
.
cast
(
score_shape
,
dtype
=
'float32'
)
norm
=
paddle
.
prod
(
score_shape
)
norm
.
stop_gradient
=
True
loss_rpn_reg
=
loss_rpn_reg
/
norm
return
{
'loss_rpn_cls'
:
loss_rpn_cls
,
'loss_rpn_reg'
:
loss_rpn_reg
}
ppdet/modeling/necks/fpn.py
浏览文件 @
988574fe
...
...
@@ -29,6 +29,34 @@ __all__ = ['FPN']
@
register
@
serializable
class
FPN
(
nn
.
Layer
):
"""
Feature Pyramid Network, see https://arxiv.org/abs/1612.03144
Args:
in_channels (list[int]): input channels of each level which can be
derived from the output shape of backbone by from_config
out_channel (list[int]): output channel of each level
spatial_scales (list[float]): the spatial scales between input feature
maps and original input image which can be derived from the output
shape of backbone by from_config
has_extra_convs (bool): whether to add extra conv to the last level.
default False
extra_stage (int): the number of extra stages added to the last level.
default 1
use_c5 (bool): Whether to use c5 as the input of extra stage,
otherwise p5 is used. default True
norm_type (string|None): The normalization type in FPN module. If
norm_type is None, norm will not be used after conv and if
norm_type is string, bn, gn, sync_bn are available. default None
norm_decay (float): weight decay for normalization layer weights.
default 0.
freeze_norm (bool): whether to freeze normalization layer.
default False
relu_before_extra_convs (bool): whether to add relu before extra convs.
default False
"""
def
__init__
(
self
,
in_channels
,
out_channel
,
...
...
@@ -67,7 +95,7 @@ class FPN(nn.Layer):
else
:
lateral_name
=
'fpn_inner_res{}_sum_lateral'
.
format
(
i
+
2
)
in_c
=
in_channels
[
i
-
st_stage
]
if
self
.
norm_type
==
'gn'
:
if
self
.
norm_type
is
not
None
:
lateral
=
self
.
add_sublayer
(
lateral_name
,
ConvNormLayer
(
...
...
@@ -93,7 +121,7 @@ class FPN(nn.Layer):
self
.
lateral_convs
.
append
(
lateral
)
fpn_name
=
'fpn_res{}_sum'
.
format
(
i
+
2
)
if
self
.
norm_type
==
'gn'
:
if
self
.
norm_type
is
not
None
:
fpn_conv
=
self
.
add_sublayer
(
fpn_name
,
ConvNormLayer
(
...
...
@@ -128,7 +156,7 @@ class FPN(nn.Layer):
else
:
in_c
=
out_channel
extra_fpn_name
=
'fpn_{}'
.
format
(
lvl
+
2
)
if
self
.
norm_type
==
'gn'
:
if
self
.
norm_type
is
not
None
:
extra_fpn_conv
=
self
.
add_sublayer
(
extra_fpn_name
,
ConvNormLayer
(
...
...
ppdet/modeling/proposal_generator/anchor_generator.py
浏览文件 @
988574fe
...
...
@@ -25,6 +25,24 @@ from .. import ops
@
register
class
AnchorGenerator
(
nn
.
Layer
):
"""
Generate anchors according to the feature maps
Args:
anchor_sizes (list[float] | list[list[float]]): The anchor sizes at
each feature point. list[float] means all feature levels share the
same sizes. list[list[float]] means the anchor sizes for
each level. The sizes stand for the scale of input size.
aspect_ratios (list[float] | list[list[float]]): The aspect ratios at
each feature point. list[float] means all feature levels share the
same ratios. list[list[float]] means the aspect ratios for
each level.
strides (list[float]): The strides of feature maps which generate
anchors
offset (float): The offset of the coordinate of anchors, default 0.
"""
def
__init__
(
self
,
anchor_sizes
=
[
32
,
64
,
128
,
256
,
512
],
aspect_ratios
=
[
0.5
,
1.0
,
2.0
],
...
...
ppdet/modeling/proposal_generator/proposal_generator.py
浏览文件 @
988574fe
...
...
@@ -25,6 +25,28 @@ from .. import ops
@
register
@
serializable
class
ProposalGenerator
(
object
):
"""
Proposal generation module
For more details, please refer to the document of generate_proposals
in ppdet/modeing/ops.py
Args:
pre_nms_top_n (int): Number of total bboxes to be kept per
image before NMS. default 6000
post_nms_top_n (int): Number of total bboxes to be kept per
image after NMS. default 1000
nms_thresh (float): Threshold in NMS. default 0.5
min_size (flaot): Remove predicted boxes with either height or
width < min_size. default 0.1
eta (float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
`adaptive_threshold = adaptive_threshold * eta` in each iteration.
default 1.
topk_after_collect (bool): whether to adopt topk after batch
collection. If topk_after_collect is true, box filter will not be
used after NMS at each image in proposal generation. default false
"""
def
__init__
(
self
,
pre_nms_top_n
=
12000
,
post_nms_top_n
=
2000
,
...
...
ppdet/modeling/proposal_generator/rpn_head.py
浏览文件 @
988574fe
...
...
@@ -27,12 +27,20 @@ from .proposal_generator import ProposalGenerator
class
RPNFeat
(
nn
.
Layer
):
def
__init__
(
self
,
feat_in
=
1024
,
feat_out
=
1024
):
"""
Feature extraction in RPN head
Args:
in_channel (int): Input channel
out_channel (int): Output channel
"""
def
__init__
(
self
,
in_channel
=
1024
,
out_channel
=
1024
):
super
(
RPNFeat
,
self
).
__init__
()
# rpn feat is shared with each level
self
.
rpn_conv
=
nn
.
Conv2D
(
in_channels
=
feat_in
,
out_channels
=
feat_out
,
in_channels
=
in_channel
,
out_channels
=
out_channel
,
kernel_size
=
3
,
padding
=
1
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
Normal
(
...
...
@@ -47,6 +55,20 @@ class RPNFeat(nn.Layer):
@
register
class
RPNHead
(
nn
.
Layer
):
"""
Region Proposal Network
Args:
anchor_generator (dict): configure of anchor generation
rpn_target_assign (dict): configure of rpn targets assignment
train_proposal (dict): configure of proposals generation
at the stage of training
test_proposal (dict): configure of proposals generation
at the stage of prediction
in_channel (int): channel of input feature maps which can be
derived by from_config
"""
def
__init__
(
self
,
anchor_generator
=
AnchorGenerator
().
__dict__
,
rpn_target_assign
=
RPNTargetAssign
().
__dict__
,
...
...
ppdet/modeling/proposal_generator/target.py
浏览文件 @
988574fe
...
...
@@ -135,12 +135,15 @@ def generate_proposal_target(rpn_rois,
tgt_gt_inds
=
[]
new_rois_num
=
[]
# In cascade rcnn, the threshold for foreground and background
# is used from cascade_iou
fg_thresh
=
cascade_iou
if
is_cascade
else
fg_thresh
bg_thresh
=
cascade_iou
if
is_cascade
else
bg_thresh
for
i
,
rpn_roi
in
enumerate
(
rpn_rois
):
gt_bbox
=
gt_boxes
[
i
]
gt_class
=
paddle
.
squeeze
(
gt_classes
[
i
],
axis
=-
1
)
# Concat RoIs and gt boxes except cascade rcnn
if
not
is_cascade
:
bbox
=
paddle
.
concat
([
rpn_roi
,
gt_bbox
])
else
:
...
...
@@ -247,10 +250,12 @@ def generate_mask_target(gt_segms, rois, labels_int32, sampled_gt_inds,
tgt_weights
=
[]
for
k
in
range
(
len
(
rois
)):
labels_per_im
=
labels_int32
[
k
]
# select rois labeled with foreground
fg_inds
=
paddle
.
nonzero
(
paddle
.
logical_and
(
labels_per_im
!=
-
1
,
labels_per_im
!=
num_classes
))
has_fg
=
True
# generate fake roi if foreground is empty
if
fg_inds
.
numel
()
==
0
:
has_fg
=
False
fg_inds
=
paddle
.
ones
([
1
],
dtype
=
'int32'
)
...
...
@@ -259,6 +264,8 @@ def generate_mask_target(gt_segms, rois, labels_int32, sampled_gt_inds,
rois_per_im
=
rois
[
k
]
fg_rois
=
paddle
.
gather
(
rois_per_im
,
fg_inds
)
# Copy the foreground roi to cpu
# to generate mask target with ground-truth
boxes
=
fg_rois
.
numpy
()
gt_segms_per_im
=
gt_segms
[
k
]
new_segm
=
[]
...
...
ppdet/modeling/proposal_generator/target_layer.py
浏览文件 @
988574fe
...
...
@@ -22,6 +22,32 @@ from .target import rpn_anchor_target, generate_proposal_target, generate_mask_t
@
register
@
serializable
class
RPNTargetAssign
(
object
):
"""
RPN targets assignment module
The assignment consists of three steps:
1. Match anchor and ground-truth box, label the anchor with foreground
or background sample
2. Sample anchors to keep the properly ratio between foreground and
background
3. Generate the targets for classification and regression branch
Args:
batch_size_per_im (int): Total number of RPN samples per image.
default 256
fg_fraction (float): Fraction of anchors that is labeled
foreground, default 0.5
positive_overlap (float): Minimum overlap required between an anchor
and ground-truth box for the (anchor, gt box) pair to be
a foreground sample. default 0.7
negative_overlap (float): Maximum overlap allowed between an anchor
and ground-truth box for the (anchor, gt box) pair to be
a background sample. default 0.3
use_random (bool): Use random sampling to choose foreground and
background boxes, default true.
"""
def
__init__
(
self
,
batch_size_per_im
=
256
,
fg_fraction
=
0.5
,
...
...
@@ -54,6 +80,33 @@ class RPNTargetAssign(object):
@
register
class
BBoxAssigner
(
object
):
__shared__
=
[
'num_classes'
]
"""
RCNN targets assignment module
The assignment consists of three steps:
1. Match RoIs and ground-truth box, label the RoIs with foreground
or background sample
2. Sample anchors to keep the properly ratio between foreground and
background
3. Generate the targets for classification and regression branch
Args:
batch_size_per_im (int): Total number of RoIs per image.
default 512
fg_fraction (float): Fraction of RoIs that is labeled
foreground, default 0.25
positive_overlap (float): Minimum overlap required between a RoI
and ground-truth box for the (roi, gt box) pair to be
a foreground sample. default 0.5
negative_overlap (float): Maximum overlap allowed between a RoI
and ground-truth box for the (roi, gt box) pair to be
a background sample. default 0.5
use_random (bool): Use random sampling to choose foreground and
background boxes, default true
cascade_iou (list[iou]): The list of overlap to select foreground and
background of each stage, which is only used In Cascade RCNN.
num_classes (int): The number of class.
"""
def
__init__
(
self
,
batch_size_per_im
=
512
,
...
...
@@ -61,7 +114,6 @@ class BBoxAssigner(object):
fg_thresh
=
.
5
,
bg_thresh
=
.
5
,
use_random
=
True
,
is_cls_agnostic
=
False
,
cascade_iou
=
[
0.5
,
0.6
,
0.7
],
num_classes
=
80
):
super
(
BBoxAssigner
,
self
).
__init__
()
...
...
@@ -70,7 +122,6 @@ class BBoxAssigner(object):
self
.
fg_thresh
=
fg_thresh
self
.
bg_thresh
=
bg_thresh
self
.
use_random
=
use_random
self
.
is_cls_agnostic
=
is_cls_agnostic
self
.
cascade_iou
=
cascade_iou
self
.
num_classes
=
num_classes
...
...
@@ -99,6 +150,18 @@ class BBoxAssigner(object):
@
serializable
class
MaskAssigner
(
object
):
__shared__
=
[
'num_classes'
,
'mask_resolution'
]
"""
Mask targets assignment module
The assignment consists of three steps:
1. Select RoIs labels with foreground.
2. Encode the RoIs and corresponding gt polygons to generate
mask target
Args:
num_classes (int): The number of class
mask_resolution (int): The resolution of mask target, default 14
"""
def
__init__
(
self
,
num_classes
=
80
,
mask_resolution
=
14
):
super
(
MaskAssigner
,
self
).
__init__
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录