control_flow.py 54.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dzhwinter 已提交
14
import contextlib
D
dzhwinter 已提交
15

16
from layer_function_generator import autodoc
Y
Yu Yang 已提交
17
from tensor import assign, fill_constant
18 19 20
from .. import core
from ..framework import Program, Variable, Operator
from ..layer_helper import LayerHelper, unique_name
21
from ops import logical_and, logical_not, logical_or
D
dzhwinter 已提交
22

Q
QI JUN 已提交
23
__all__ = [
Y
ying 已提交
24 25 26 27 28 29 30
    'split_lod_tensor',
    'merge_lod_tensor',
    'BlockGuard',
    'BlockGuardWithCompletion',
    'StaticRNNMemoryLink',
    'WhileGuard',
    'While',
31
    'Switch',
Y
ying 已提交
32 33 34 35 36 37 38 39 40
    'lod_rank_table',
    'max_sequence_len',
    'topk',
    'lod_tensor_to_array',
    'array_to_lod_tensor',
    'increment',
    'array_write',
    'create_array',
    'less_than',
41
    'equal',
Y
ying 已提交
42 43 44 45 46 47 48 49 50 51
    'array_read',
    'shrink_memory',
    'array_length',
    'IfElse',
    'DynamicRNN',
    'ConditionalBlock',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'ParallelDo',
    'Print',
D
dzhwinter 已提交
52 53
]

Y
Yu Yang 已提交
54

55
def split_lod_tensor(input, mask, level=0):
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    """
    **split_lod_tensor**

    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
    the input at a certain level in the tensor.

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
        level(int): The specific lod level to rank.

    Returns:
        Variable: The true branch of tensor as per the mask applied to input.
        Variable: The false branch of tensor as per the mask applied to input.

    Examples:
        .. code-block:: python

          x = layers.data(name='x', shape=[1])
          x.persistable = True

          y = layers.data(name='y', shape=[1])
          y.persistable = True

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
    """
86
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
87 88
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
89 90 91 92 93 94 95 96 97 98 99 100
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


101
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
    merges the True and False branches of the tensor into a single Output
    at a certain lod level indiacted by :math:`level`.

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
        level(int): The specific lod level to rank.

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
136
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
137
    out = helper.create_tmp_variable(dtype=in_true.dtype)
138 139 140 141 142 143 144 145 146 147 148
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
149 150 151 152 153 154 155
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
156 157
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
158 159 160 161 162 163 164 165 166 167
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
168 169 170 171 172 173 174 175 176
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
177
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
178 179
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
180 181

    Returns:
Y
yangyaming 已提交
182
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
183 184 185 186 187 188 189 190 191

    Examples:
        .. code-block:: python

        value = some_layer(...)
        Print(value, summarize=10,
              message="The content of some_layer: ")
    '''
    helper = LayerHelper('print', **locals())
Y
yangyaming 已提交
192
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yan Chunwei 已提交
193 194
    helper.append_op(
        type='print',
Y
yangyaming 已提交
195
        inputs={'In': input},
Y
Yan Chunwei 已提交
196 197 198 199 200 201 202 203
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
204 205 206
            'print_phase': print_phase.upper()
        },
        outputs={'Out': out})
Y
Yan Chunwei 已提交
207 208 209
    return out


Y
Yu Yang 已提交
210 211
class BlockGuard(object):
    """
212 213 214 215
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
216 217
    """

218 219
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
220
            raise TypeError("BlockGuard takes a program")
221
        self.main_program = main_program
Y
Yu Yang 已提交
222 223

    def __enter__(self):
224
        self.main_program.create_block()
Y
Yu Yang 已提交
225 226

    def __exit__(self, exc_type, exc_val, exc_tb):
227
        self.main_program.rollback()
Y
Yu Yang 已提交
228 229 230 231 232
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
233
class ParallelDo(object):
234
    """
Y
Yang Yang 已提交
235
    ParallelDo class.
236

Y
Yang Yang 已提交
237 238 239
    ParallelDo class is used to create a ParallelDo.
    """

Y
Yang Yang 已提交
240
    def __init__(self, places, use_nccl=False, name=None):
Y
Yang Yang 已提交
241 242 243 244 245
        self.helper = LayerHelper("parallel_do", name=name)
        self.inputs = []
        self.places = places
        self.outputs = []
        self.status = StaticRNN.BEFORE_RNN_BLOCK
Y
Yang Yang 已提交
246
        self.use_nccl = use_nccl
Y
Yang Yang 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

    def do(self):
        return BlockGuardWithCompletion(self)

    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def read_input(self, var):
        self.inputs.append(var)
Y
Yang Yang 已提交
270
        return var
Y
Yang Yang 已提交
271 272 273 274 275 276 277 278 279 280

    def write_output(self, var):
        self.outputs.append(var)

    def get_parameters(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        local_inputs = set()
Y
Yang Yang(Tony) 已提交
281
        params = list()
Y
Yang Yang 已提交
282 283 284 285 286 287 288 289
        for var in self.inputs:
            local_inputs.add(var.name)

        for op in current_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)
Y
Yang Yang(Tony) 已提交
290 291 292 293 294

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

Y
Yang Yang 已提交
295
        params = list(set(params))
Y
Yang Yang 已提交
296

Q
qiaolongfei 已提交
297
        return [parent_block.var(name) for name in params]
Y
Yang Yang 已提交
298 299 300 301 302 303 304 305 306

    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

Y
Yang Yang 已提交
307 308 309 310 311 312 313 314 315 316
        self.outputs = [
            parent_block.create_var(
                name=o.name,
                shape=o.shape,
                dtype=o.dtype,
                lod_level=o.lod_level,
                persistable=o.persistable,
                stop_gradient=o.stop_gradient) for o in self.outputs
        ]

Y
Yang Yang 已提交
317
        inputs = [parent_block.var(i.name) for i in self.inputs]
Y
Yang Yang 已提交
318
        outputs = [parent_block.var(o.name) for o in self.outputs]
Y
Yang Yang 已提交
319 320 321 322 323 324 325 326

        parent_block.append_op(
            type='parallel_do',
            inputs={
                'inputs': inputs,
                'parameters': self.get_parameters(),
                'places': self.places
            },
Y
Yang Yang 已提交
327
            outputs={'outputs': outputs,
Y
Yang Yang 已提交
328
                     'parallel_scopes': [step_scope]},
Y
Yang Yang 已提交
329 330
            attrs={'sub_block': current_block,
                   'use_nccl': self.use_nccl})
Y
Yang Yang 已提交
331 332 333 334 335 336 337


class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
338 339
    """

Y
Yu Yang 已提交
340
    def __init__(self, rnn):
Y
Yang Yang 已提交
341 342 343 344
        if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)):
            raise TypeError(
                "BlockGuardWithCompletion takes a StaticRNN or ParallelDo")
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
345 346 347 348
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
349
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
350 351

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
352 353
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
354
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
Y
Yang Yang 已提交
355 356 357
        self.rnn.complete_op()
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
358 359 360 361


class StaticRNNMemoryLink(object):
    """
362 363 364 365 366 367 368 369 370 371 372 373
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
374 375 376 377 378 379 380 381 382
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
383 384 385 386 387 388
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
389 390 391 392
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

393 394
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
395 396 397 398 399 400 401 402
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
Y
Yang Yang 已提交
403
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
404 405 406 407 408

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

409 410 411 412 413 414 415
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
416 417 418 419 420 421 422 423 424
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
425 426
        self._assert_in_rnn_block_('memory')
        if init is None:
427
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
428
                raise ValueError(
429
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
430
            parent_block = self.parent_block()
Y
Yu Yang 已提交
431 432
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
433
            boot_var = parent_block.create_var(
434 435
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
436
                dtype=batch_ref.dtype,
437
                persistable=False)
Y
Yu Yang 已提交
438 439

            parent_block.append_op(
440 441
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
442 443 444
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
445
                    'shape': boot_var.shape,
F
fengjiayi 已提交
446
                    'dtype': boot_var.dtype,
447 448
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
449 450 451 452 453
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
454
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
455
                dtype=init.dtype,
Y
Yu Yang 已提交
456 457 458 459 460 461 462 463 464 465
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
466 467
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
468 469 470
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
471
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
472 473 474 475 476 477 478 479
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
480
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
481 482 483 484
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
485
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
486

Y
Yu Yang 已提交
487
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
488 489
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
490
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
504
        prog = self.helper.main_program
Y
Yu Yang 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

Y
Yang Yang 已提交
520
    def complete_op(self):
521 522
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
562
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
563 564 565 566 567

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
568
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
584
                'sub_block': rnn_block
Y
Yu Yang 已提交
585
            })
Y
Yu Yang 已提交
586 587


Y
Yang Yang(Tony) 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

612 613
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
614 615 616 617
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
618
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
Y
Yu Yang 已提交
656 657
                'X':
                [parent_block.var_recursive(x_name) for x_name in x_name_list],
Y
Yang Yang(Tony) 已提交
658 659 660 661
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
662
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
663 664


665
def lod_rank_table(x, level=0):
Y
yangyaming 已提交
666 667 668
    """LoD Rank Table Operator. Given an input variable **x** and a level number
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
669
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
670 671 672
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
673 674 675 676

        .. code-block:: text

            x is a LoDTensor:
Y
yangyaming 已提交
677
                x.lod = [[0,                2, 3],
Y
yangyaming 已提交
678 679 680
                         [0,             5, 6, 7]]
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
681 682 683
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
684

Y
yangyaming 已提交
685 686 687 688 689 690 691 692 693
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
694 695 696 697

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
698 699
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
700 701 702 703 704 705 706 707 708 709

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
                            dtype='float32', lod_level=1)
            out = layers.lod_rank_table(x=x, level=0)
710
    """
Y
Yu Yang 已提交
711 712 713
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
714
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
715 716 717 718 719 720
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
721 722


723
def max_sequence_len(rank_table):
Y
yangyaming 已提交
724
    """Max Sequence Len Operator. Given a LoDRankTable object, this layer
Y
yangyaming 已提交
725 726 727 728
    returns the max length of a batch of sequences. In fact, a LoDRankTable
    object contains a list of tuples(<sequence index, sequence length>) and
    the list is already sorted by sequence length in descending order, so the
    operator just returns the sequence length of the first tuple element.
Y
yangyaming 已提交
729 730 731 732 733

    Args:
        rank_table (Variable): Input variable which is a LoDRankTable object.

    Returns:
Y
yangyaming 已提交
734
        Variable: The max length of sequence.
Y
yangyaming 已提交
735 736 737 738 739 740 741 742

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
                            dtype='float32', lod_level=1)
            rank_table = layers.lod_rank_table(x=x, level=0)
            max_seq_len = layers.max_sequence_len(rank_table)
F
fengjiayi 已提交
743 744 745 746 747 748 749 750 751 752
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


753
def topk(input, k):
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
    """
    **topk**

    This function performs the operation that selects the k entries in the input
    vector and outputs their values and indices as vectors. Thus topk_out[j] is
    the j-th largest entry in input, and its index is topk_indices[j]

    Args:
        input (Variable|list): The input tensor that has all the data.
        k (int): The number of top elements that the function will pick.

    Returns:
        Variable: The variable of type array that contains the k largest entries
                  from input.
        Variable: The variable of type array that contains the indices of k
                  largest entries from input.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          k = 5
          array = fluid.layers.topk(x, k)
    """
Y
Yu Yang 已提交
778
    helper = LayerHelper('topk', **locals())
Q
Qiao Longfei 已提交
779
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
780 781 782 783 784 785 786 787 788 789
    topk_indices = helper.create_tmp_variable(dtype='int64')
    helper.append_op(
        type='top_k',
        inputs={'X': [input]},
        outputs={'Out': [topk_out],
                 'Indices': [topk_indices]},
        attrs={'k': k})
    return topk_out, topk_indices


790
def lod_tensor_to_array(x, table):
791
    """ Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY.
792 793

    Args:
794
        x (Variable|list): The LOD tensor to be converted to a LOD tensor array.
795 796 797 798 799 800 801 802 803 804 805 806 807 808
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type array that has been converted from a
                  tensor.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
809
    """
810 811
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
812
        name=unique_name.generate("lod_tensor_to_array"),
813
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
814
        dtype=x.dtype)
815 816 817 818 819 820 821 822
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


823
def array_to_lod_tensor(x, table):
824
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
825 826

    Args:
827
        x (Variable|list): The lod tensor array to be converted to a tensor.
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
843
    """
844
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
845
    tmp = helper.create_tmp_variable(dtype=x.dtype)
846 847 848 849 850 851 852 853
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


854
def increment(x, value=1.0, in_place=True):
855 856
    """
    This function performs an operation that increments each value in the
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
    input :math:`x` by an amount: :math:`value` as mentioned in the input
    parameter. This operation is performed in-place by default.

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
        Variable: The tensor variable storing the transformation of
                  element-wise increment of each value in the input.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
874
    """
Y
Yu Yang 已提交
875
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
876
    if not in_place:
F
fengjiayi 已提交
877
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
878 879
    else:
        out = x
Y
Yu Yang 已提交
880 881 882
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
883
        outputs={'Out': [out]},
884
        attrs={'step': float(value)})
Y
Yang Yu 已提交
885
    return out
Y
Yu Yang 已提交
886 887


888
def array_write(x, i, array=None):
889 890 891 892 893
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
894 895 896

    Args:
        x (Variable|list): The input tensor from which the data will be read.
897 898 899 900 901 902 903 904
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

905
    Returns:
906
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
907 908 909 910 911 912 913

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
914
    """
Y
Yu Yang 已提交
915 916 917 918 919
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
920
            dtype=x.dtype)
Y
Yu Yang 已提交
921 922 923 924 925 926 927 928
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


929
def create_array(dtype):
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
    """This function creates an array of type :math:`LOD_TENSOR_ARRAY` using the
    LayerHelper.

    Args:
        dtype (int|float): The data type of the elements in the array.

    Returns:
        Variable: The tensor variable storing the elements of data type.

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
945 946 947 948 949 950 951
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


952
def less_than(x, y, cond=None, **ignored):
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
    """
    **Less than**

    This layer returns the truth value of :math:`x < y` elementwise.

    Args:
        x(Variable): First operand of *less_than*
        y(Variable): Second operand of *less_than*
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
        Variable: The tensor variable storing the output of *less_than*.

    Examples:
        .. code-block:: python

          less = fluid.layers.less_than(x=label, y=limit)
    """
Y
Yang Yang(Tony) 已提交
971 972 973 974 975 976 977 978 979 980 981
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
def equal(x, y, cond=None, **ignored):
    """
    **equal**

    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


1012
def array_read(array, i):
K
kavyasrinet 已提交
1013
    """This function performs the operation to read the data in as an
1014
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    Args:
        array (Variable|list): The input tensor that will be written to an array.
        i (Variable|list): The subscript index in tensor array, that points the
                           place where data will be written to.
    Returns:
        Variable: The tensor type variable that has the data written to it.
    Examples:
        .. code-block::python
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
1026
    """
Y
Yu Yang 已提交
1027 1028 1029 1030 1031
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1032
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1033 1034 1035 1036 1037 1038
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1039 1040


1041
def shrink_memory(x, i, table):
1042 1043 1044 1045
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
1046
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1047
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1048
    helper.append_op(
Y
Yang Yu 已提交
1049
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1050 1051 1052 1053 1054 1055
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1056 1057


1058
def array_length(array):
K
kavyasrinet 已提交
1059
    """This function performs the operation to find the length of the input
1060
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
1076
    """
Y
Yang Yu 已提交
1077 1078 1079 1080 1081 1082
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101


class ConditionalBlockGuard(BlockGuard):
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
1102
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1103 1104 1105 1106
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1107
        self.is_scalar_condition = is_scalar_condition
1108
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
            parent_block.var(each_name) for each_name in params
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
X
xuwei06 已提交
1139
            if var_name in intermediate
Y
Yu Yang 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        """create a default case for this switch
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1252
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1253 1254
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1255
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1269
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1270
                dtype=x.dtype)
Y
Yu Yang 已提交
1271 1272

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1273
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1274
                dtype=x.dtype)
Y
Yu Yang 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1315 1316
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1317
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1318 1319 1320
            out_table.append(outside_out)

            # assign local var to outside
1321
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1345
                    level=0))
Y
Yu Yang 已提交
1346
        return rlist
1347 1348 1349 1350 1351 1352 1353


class DynamicRNN(object):
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1354 1355
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1356 1357 1358 1359
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
Q
QI JUN 已提交
1360 1361
        self.zero_idx = fill_constant(
            shape=[1], value=0, dtype='int64', force_cpu=True)
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1375
                "step_input() can only take a Variable as its input.")
1376 1377 1378
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1379
                name=unique_name.generate('lod_rank_table'),
1380 1381 1382 1383 1384 1385 1386
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1387 1388
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
                outputs={'Out': self.cond})

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1402
            name=unique_name.generate('dynamic_rnn_input_array'),
1403 1404 1405 1406 1407 1408 1409 1410
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1411
        return array_read(array=input_array, i=self.step_idx)
1412

Y
yangyaming 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
    def static_input(self, x):
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1423
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

1433 1434 1435 1436
    @contextlib.contextmanager
    def block(self):
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
Q
QI JUN 已提交
1437 1438
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1439 1440 1441 1442
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1443
            increment(x=self.step_idx, value=1.0, in_place=True)
1444 1445

            for new_mem, mem_array in self.mem_link:
1446 1447 1448
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

            less_than(x=self.step_idx, y=self.max_seq_len, cond=self.cond)
1449 1450 1451 1452 1453

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1454
                    x=each_array, table=self.lod_rank_table))
1455 1456 1457

    def __call__(self, *args, **kwargs):
        if self.status != DynamicRNN.AFTER_RNN:
1458 1459
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1460 1461 1462 1463 1464
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1465 1466 1467 1468 1469 1470
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
1471 1472 1473 1474 1475 1476
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1477 1478 1479 1480 1481 1482 1483 1484
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1485
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1496
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1497
                name=unique_name.generate('dynamic_rnn_mem_array'),
1498 1499 1500 1501
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1502
                inputs={'X': init_tensor,
1503 1504
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1505
            retv = array_read(array=mem_array, i=self.step_idx)
1506
            retv = shrink_memory(
1507
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1508 1509 1510 1511 1512 1513 1514 1515 1516
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1517
                name=unique_name.generate('mem_init'), dtype=dtype)
1518
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1519 1520
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1559
                name=unique_name.generate("_".join(
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1578 1579


1580
@autodoc()
Y
Yang Yu 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out