未验证 提交 599c0d0c 编写于 作者: K Kaipeng Deng 提交者: GitHub

polish changelog (#4422)

上级 041edec4
......@@ -299,11 +299,7 @@ PaddleDetection为基于飞桨PaddlePaddle的端到端目标检测套件,提
## 版本更新
v2.2版本已经在`08/2021`发布,全新发布Transformer检测系列模型,新增关键点检测Dark HRNet模型,新增人头、车辆跟踪垂类模型,发布旋转框检测S2ANet优化模型,主流模型支持batch size > 1预测部署,详细内容请参考[版本更新文档](docs/CHANGELOG.md)
v2.1版本已经在`05/2021`发布,全新发布关键点检测和多目标跟踪能力,支持无标注框检测,发布PPYOLO系列模型压缩模型,新增ONNX模型导出教程,详细内容请参考[版本更新文档](docs/CHANGELOG.md)
v2.0版本已经在`04/2021`发布,全面支持动态图版本,新增支持BlazeFace, PSSDet等系列模型和大量骨干网络,发布PP-YOLO v2, PP-YOLO tiny和旋转框检测S2ANet模型。支持模型蒸馏、VisualDL,新增动态图预测部署benchmark,详细内容请参考[版本更新文档](docs/CHANGELOG.md)
版本更新内容请参考[版本更新文档](docs/CHANGELOG.md)
## 许可证书
......
......@@ -305,11 +305,7 @@ The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of represen
## Updates
v2.2 was released at `08/2021`, release Transformer detection models, release Dark HRNet keypoint detection model, release tracking models of head and vehicle, release optimized S2ANet model, inference with batch size > 1 supported for main architectures. Please refer to [change log](docs/CHANGELOG_en.md) for details.
v2.1 was released at `05/2021`, Release Keypoint Detection and Multi-Object Tracking. Release model compression for PPYOLO series. Update documents such as export ONNX model. Please refer to [change log](docs/CHANGELOG_en.md) for details.
v2.0 was released at `04/2021`, fully support dygraph version, which add BlazeFace, PSS-Det and plenty backbones, release `PP-YOLOv2`, `PP-YOLO tiny` and `S2ANet`, support model distillation and VisualDL, add inference benchmark, etc. Please refer to [change log](docs/CHANGELOG_en.md) for details.
Updates please refer to [change log](docs/CHANGELOG_en.md) for details.
## License
......
简体中文 | [English](./CHANGELOG_en.md)
# 版本更新信息
## 最新版本信息
......@@ -17,7 +19,7 @@
- 发布针对EdgeBoard优化的PP-YOLO-EB模型
- 跟踪
- 发布FairMOT高精度模型、小尺度模型和轻量级模型
- 发布FairMot高精度模型、小尺度模型和轻量级模型
- 发布行人、人头和车辆实跟踪垂类模型库,覆盖航拍监控、自动驾驶、密集人群、极小目标等场景
- DeepSORT模型适配PP-YOLO, PP-PicoDet等更多检测器
......
English | [简体中文](./CHANGELOG.md)
# Version Update Information
## Last Version Information
### 2.3(11.03/2021)
- Feature models:
- Object detection: The lightweight object detection model PP-PicoDet, performace and inference speed reaches SOTA on mobile side
- Keypoint detection: The lightweight keypoint detection model PP-TinyPose for mobile side
- Model richness:
- Object detection:
- Publish Swin-Transformer object detection model
- Publish TOOD(Task-aligned One-stage Object Detection) model
- Publish GFL(Generalized Focal Loss) object detection model
- Publish Sniper optimization method for tiny object detection, supporting Faster RCNN and PP-YOLO series models
- Publish PP-YOLO optimized model PP-YOLO-EB for EdgeBoard
- Multi-object tracking:
- Publish high-precision, small-scale and lightweight model based on FairMot
- Publish real-time tracking model zoo for pedestrian, head and vehicle tracking, including scenarios such as aerial surveillance, autonomous driving, dense crowds, and tiny object tracking
- DeepSort support PP-YOLO, PP-PicoDet as object detector
- Keypoint detection:
- Publish Lite HRNet model
- Inference deployment:
- Support NPU deployment for YOLOv3 series
- Support C++ deployment for FairMot
- Support C++ and PaddleLite deployment for keypoint detection series model
- Documents:
- Add series English documents
### 2.2(08.10/2021)
- Model richness:
......@@ -13,7 +44,7 @@
- Model optimization:
- AlignConv optimization model was released by S2ANet, and DOTA dataset mAP was optimized to 74.0
- Predict deployment
- Inference deployment
- Mainstream models support batch size>1 predictive deployment, including YOLOv3, PP-YOLO, Faster RCNN, SSD, TTFNet, FCOS
- New addition of target tracking models (JDE, Fair Mot, Deep Sort) Python side prediction deployment support, and support for TensorRT prediction
- FairMot joint key point detection model deployment Python side predictive deployment support
......@@ -23,7 +54,7 @@
- New TensorRT version notes to Windows Predictive Deployment documentation
- FAQ documents are updated
- Problem fixes:
- Bug fixes:
- Fixed PP-YOLO series model training convergence problem
- Fixed the problem of no label data training when batch_size > 1
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册