layers.py 198.9 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18 19 20

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22 23 24 25
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
26

Z
zhangjinchao01 已提交
27 28 29 30 31 32
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
    'mse_cost',
    'regression_cost',
    'classification_cost',
    'LayerOutput',
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
    'seq_concat_layer',
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
    'scaling_projection',
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
    'rotate_layer',
    'sum_to_one_norm_layer',
G
guosheng 已提交
79
    'row_l2_norm_layer',
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
    'gru_step_naive_layer',
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
    'warp_ctc_layer',
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
111
    'huber_classification_cost',
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
    'printer_layer',
    'print_layer',
    'priorbox_layer',
    'cross_channel_norm_layer',
    'multibox_loss_layer',
    'detection_output_layer',
    'spp_layer',
    'pad_layer',
    'eos_layer',
    'smooth_l1_cost',
    'layer_support',
    'multiplex_layer',
    'row_conv_layer',
    'dropout_layer',
    'prelu_layer',
    'gated_unit_layer',
    'crop_layer',
132
    'sub_nested_seq_layer',
133
    'clip_layer',
134
    'slice_projection',
135
    'kmax_sequence_score_layer',
Q
qijun 已提交
136
]
Z
zhangjinchao01 已提交
137 138 139 140 141 142 143


class LayerType(object):
    """
    Layer type enumerations.
    """

144 145 146 147 148 149 150 151
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
152
    POOLING_AVG = 'average'
153
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
154
    COST = 'cost'
155 156
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
157
    HSIGMOID = 'hsigmoid'
158 159 160 161 162 163
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
    POOL_LAYER = 'pool'
Z
zhangjinchao01 已提交
164 165 166
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
167
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
168 169 170 171
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
172
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
173 174 175 176 177 178 179

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
180
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
181 182 183
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
184
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
185
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
186
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
187 188 189 190 191 192 193 194 195 196 197

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
198
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
199
    BLOCK_EXPAND = "blockexpand"
200
    MAXOUT = "maxout"
Q
qijun 已提交
201
    SPP_LAYER = "spp"
D
dangqingqing 已提交
202
    PAD_LAYER = "pad"
W
wwhu 已提交
203
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
204
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
205 206 207

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
208 209
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
210 211 212 213 214

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
215
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
216

217 218
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
219
    HUBER_CLASSIFICATION = 'huber_classification'
220 221 222 223 224 225 226 227
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
228
    CROP_LAYER = 'crop'
C
caoying03 已提交
229
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
230
    CLIP_LAYER = 'clip'
Z
zhangjinchao01 已提交
231

232 233
    KMAX_SEQ_SCORE = 'kmax_seq_score'

Z
zhangjinchao01 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
254
    """
L
Luo Tao 已提交
255
    PaddlePaddle supports three sequence types:
256 257 258

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
259 260
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
261

L
Luo Tao 已提交
262
    Accordingly, AggregateLevel supports two modes:
263

L
Luo Tao 已提交
264
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
265
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
266 267
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
268
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
269 270 271
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
272 273
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
274 275 276
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
299
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
300 301
    """

Q
qijun 已提交
302 303 304 305 306 307 308 309 310
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
311
                 reverse=None):
Z
zhangjinchao01 已提交
312 313
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
314
        assert size is not None
Z
zhangjinchao01 已提交
315 316
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
317
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
318
        self.layer_type = layer_type
319 320
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
321 322 323 324 325 326 327 328
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
329
        self.reverse = reverse
Z
zhangjinchao01 已提交
330

331 332 333 334 335 336 337 338
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
339 340 341

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
342
DEVICE = 'device'
Z
zhangjinchao01 已提交
343 344 345


def layer_support(*attrs):
346
    attrs_list = list(attrs)
347
    attrs_list.append(DEVICE)
Q
qijun 已提交
348

Z
zhangjinchao01 已提交
349 350 351
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
352
            for attr in attrs_list:
Z
zhangjinchao01 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
369 370 371 372 373
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
413 414
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
415 416 417 418
    proj.origin = input
    return proj


419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
449 450
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
451 452 453 454
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
494 495
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
496 497 498 499
    proj.origin = input
    return proj


500
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
531
    :type input: LayerOutput
Z
zhangjinchao01 已提交
532 533
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
534
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
535 536 537 538 539 540
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
541 542
        if size is None:
            size = input.size - offset
Q
qijun 已提交
543
        proj = IdentityOffsetProjection(
544
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
545 546 547 548
        proj.origin = input
    return proj


549 550
def slice_projection(input, slices):
    """
551 552
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
553 554

    .. math::
555
       output = [input.slices()]
556 557 558 559 560 561 562 563 564 565 566 567 568 569

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

    :param input: Input Layer.
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
570
    :type slices: pair of int
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
610
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
611 612 613 614
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
615
@wrap_param_attr_default()
616
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
617
    """
618
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

632 633 634 635 636 637 638
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
639 640
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
641
    proj.origin = input
642
    return proj
Z
zhangjinchao01 已提交
643

644 645

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
646 647
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
648

Z
zhangjinchao01 已提交
649
    .. math::
L
Luo Tao 已提交
650
       out.row[i] += scale * (a.row[i] .* b.row[i])
651

Z
zhangjinchao01 已提交
652 653
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
654

Z
zhangjinchao01 已提交
655
    The example usage is:
656

Z
zhangjinchao01 已提交
657
    .. code-block:: python
658

L
Luo Tao 已提交
659
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
660

661 662 663 664
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
665 666
    :param scale: config scalar, default value is one.
    :type scale: float
667 668
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
669
    """
670 671 672
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
673
    a = kwargs.get('x', a)  # For Backward capacity.
674 675 676 677 678 679
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
680
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
681
    op.origin = [a, b]
682
    return op
Z
zhangjinchao01 已提交
683

684

Z
zhangjinchao01 已提交
685
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
686 687 688
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
725 726 727 728 729 730
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
744
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
761 762 763 764 765 766 767
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
768 769 770 771 772
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

773
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
774 775 776 777 778 779 780 781
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
782
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
783
            self.inputs.append(other)
784 785 786 787
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
788 789 790 791 792 793 794 795
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

796
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
797 798
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
799
        assert len(self.inputs) != 0
800
        ml = MixedLayer(
Z
zhangjinchao01 已提交
801 802 803 804 805
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
806
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
807 808 809
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
810
        self.finalized = True
Z
zhangjinchao01 已提交
811 812 813 814 815 816


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
817 818 819 820 821
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
866 867 868 869 870 871
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
872
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
873 874 875 876 877 878 879 880
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
L
Luo Tao 已提交
881
def data_layer(name, size, height=None, width=None, layer_attr=None):
Z
zhangjinchao01 已提交
882 883 884 885 886 887 888
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
889
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
890 891 892 893 894

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
895
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
896
    :type height: int|None
L
Luo Tao 已提交
897
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
898
    :type width: int|None
Z
zhangjinchao01 已提交
899 900
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
901
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
902 903
    :rtype: LayerOutput
    """
Q
qijun 已提交
904 905 906 907
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
908 909
        height=height,
        width=width,
Q
qijun 已提交
910
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
911 912 913 914 915 916

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
917
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
933
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
934 935
    :rtype: LayerOutput
    """
Q
qijun 已提交
936 937 938 939 940 941
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
942 943 944 945 946 947 948 949 950
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
951 952 953 954 955 956 957
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
958 959 960 961 962 963 964 965 966 967 968 969
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
970
    which is equal to:
Z
zhangjinchao01 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
993
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
994 995 996 997
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
998
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
999 1000
        param_attr = [param_attr]
    else:
1001
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1002 1003 1004 1005
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1006
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1007 1008

    Layer(
Q
qijun 已提交
1009 1010 1011
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1012 1013 1014 1015 1016
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1017 1018 1019
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1020

1021

1022
@wrap_name_default("print")
1023
def printer_layer(input, format=None, name=None):
1024 1025
    """
    Print the output value of input layers. This layer is useful for debugging.
1026 1027 1028 1029 1030

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
1031
    :return: LayerOutput
1032
    """
1033 1034 1035 1036 1037
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1038 1039 1040

    Layer(
        name=name,
1041
        format=format,
1042
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1043
        inputs=[l.name for l in input], )
1044
    # this layer don't return anything, can not be input of other layer.
1045

X
xuwei06 已提交
1046 1047 1048 1049 1050 1051 1052
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1053

Y
yuan 已提交
1054
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1055
def priorbox_layer(input,
G
gaoyuan 已提交
1056
                   image,
G
gaoyuan 已提交
1057 1058 1059 1060 1061
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1062 1063 1064 1065 1066 1067 1068
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1069 1070
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1082
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1083 1084 1085
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1086
        inputs=[input.name, image.name],
Y
yuan 已提交
1087 1088 1089 1090 1091 1092
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1093 1094
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1095
        parents=[input, image],
G
gaoyuan 已提交
1096 1097 1098
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1116 1117
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1118
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1119
    :type input_conf: LayerOutput | List of LayerOutput
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1141
    input_loc_num = len(input_loc)
1142 1143 1144 1145 1146 1147

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1148
    input_conf_num = len(input_conf)
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
    box location.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1190 1191
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1192
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1193
    :type input_conf: LayerOutput | List of LayerOutput.
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1215
    input_loc_num = len(input_loc)
1216 1217 1218 1219 1220 1221

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1222 1223
    input_conf_num = len(input_conf)

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1252 1253
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1254 1255 1256 1257 1258
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1259

G
gaoyuan 已提交
1260 1261 1262 1263 1264 1265 1266 1267
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1268
    assert input.num_filters is not None
G
gaoyuan 已提交
1269 1270
    Layer(
        name=name,
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1284 1285
    return LayerOutput(
        name,
1286
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1287 1288 1289 1290 1291
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1292 1293 1294 1295
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1296 1297 1298 1299
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1300
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1301
                  stride=-1,
Z
zhangjinchao01 已提交
1302 1303 1304 1305
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1306 1307
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1308 1309 1310
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1311
    operation. Note that for sequence with sub-sequence, the default value
1312 1313
    of stride is -1.

Z
zhangjinchao01 已提交
1314 1315 1316 1317 1318 1319
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1320
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1321

L
Luo Tao 已提交
1322 1323
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1324 1325 1326 1327 1328 1329 1330 1331
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1332
    :param stride: The step size between successive pooling regions.
1333
    :type stride: Int
Z
zhangjinchao01 已提交
1334 1335 1336 1337
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1338
    :return: LayerOutput object.
Y
Yu Yang 已提交
1339
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1340 1341
    """
    extra_dict = dict()
1342
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1343 1344
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1345 1346 1347 1348
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1349 1350
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1351 1352 1353
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1354 1355 1356 1357 1358 1359
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1360
        stride=stride,
Q
qijun 已提交
1361
        **extra_dict)
Z
zhangjinchao01 已提交
1362

Q
qijun 已提交
1363 1364
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1365

Q
qijun 已提交
1366

Z
zhangjinchao01 已提交
1367 1368
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1369
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1370 1371
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1372
@layer_support()
Q
qijun 已提交
1373 1374
def lstmemory(input,
              name=None,
1375
              size=None,
Q
qijun 已提交
1376 1377 1378 1379 1380 1381
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1382 1383 1384 1385 1386 1387 1388 1389
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1390
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1391

L
luotao02 已提交
1392
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1393

L
luotao02 已提交
1394
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1395

L
luotao02 已提交
1396
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1397

L
luotao02 已提交
1398
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1399 1400


C
caoying03 已提交
1401
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1402
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1403 1404 1405 1406
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1407

C
caoying03 已提交
1408
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1409 1410
    to config a simple plain lstm layer.

C
caoying03 已提交
1411 1412 1413 1414
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1415 1416 1417 1418 1419

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1420 1421
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1440
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1441 1442 1443 1444 1445 1446
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1447
    assert input.size is not None and input.size % 4 == 0
1448

1449 1450 1451 1452 1453
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1454 1455 1456
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1457

Q
qijun 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1468

Q
qijun 已提交
1469 1470 1471 1472 1473
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1474

Z
zhangjinchao01 已提交
1475 1476 1477

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1478
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1479 1480
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1481
@layer_support()
Q
qijun 已提交
1482
def grumemory(input,
1483
              size=None,
Q
qijun 已提交
1484 1485 1486 1487 1488 1489
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1511 1512
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1513 1514 1515 1516 1517

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1518 1519 1520
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1521 1522 1523 1524 1525

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1526
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1527
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1528 1529 1530
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1531

C
caoying03 已提交
1532 1533 1534
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1546 1547
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1548
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1564
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1565 1566 1567 1568
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1569 1570 1571 1572 1573 1574
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1575 1576 1577
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1578

Q
qijun 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1588

Q
qijun 已提交
1589 1590 1591 1592 1593
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1594

Z
zhangjinchao01 已提交
1595 1596 1597

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1598 1599
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1600
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1601
             stride=-1,
Z
zhangjinchao01 已提交
1602 1603 1604 1605
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1606 1607 1608
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1609
    of stride is -1.
1610

L
Luo Tao 已提交
1611 1612 1613 1614 1615 1616
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1617 1618 1619 1620 1621
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1622
    :param stride: The step size between successive pooling regions.
1623
    :type stride: Int
Z
zhangjinchao01 已提交
1624 1625
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1626
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1627 1628
    :rtype: LayerOutput
    """
1629 1630 1631 1632 1633 1634
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1635
    if agg_level == AggregateLevel.TO_SEQUENCE:
1636 1637
        assert stride == -1

Z
zhangjinchao01 已提交
1638 1639 1640 1641 1642
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1643
        stride=stride,
Q
qijun 已提交
1644 1645 1646 1647 1648 1649
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1650 1651 1652 1653


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1654 1655
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1656
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1657
              stride=-1,
Z
zhangjinchao01 已提交
1658 1659 1660 1661
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1662 1663 1664
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1665
    of stride is -1.
1666

L
Luo Tao 已提交
1667 1668 1669 1670 1671 1672
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1673 1674 1675 1676 1677
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1678
    :param stride: The step size between successive pooling regions.
1679
    :type stride: Int
Z
zhangjinchao01 已提交
1680 1681
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1682
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1683 1684
    :rtype: LayerOutput
    """
1685 1686 1687 1688 1689 1690 1691

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1692
    if agg_level == AggregateLevel.TO_SEQUENCE:
1693 1694
        assert stride == -1

Z
zhangjinchao01 已提交
1695 1696 1697 1698 1699
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1700
        stride=stride,
Q
qijun 已提交
1701 1702 1703 1704 1705 1706
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1707 1708 1709


class ExpandLevel(object):
1710 1711 1712 1713 1714
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1715 1716
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1717 1718
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1719 1720
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1721 1722
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1723 1724
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1725 1726
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1727

1728

Z
zhangjinchao01 已提交
1729 1730
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1731 1732
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1733 1734
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1735
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1747
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1762
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1772 1773 1774 1775 1776 1777
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1778 1779


X
xuwei06 已提交
1780
@wrap_name_default()
X
xuwei06 已提交
1781
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1782
@layer_support()
X
xuwei06 已提交
1783 1784 1785
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1786
                 act=None,
X
xuwei06 已提交
1787 1788
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1789
    """
X
xuwei06 已提交
1790
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1791

X
xuwei06 已提交
1792
    If as_row_vector:
X
xuwei06 已提交
1793
    .. math::
X
xuwei06 已提交
1794 1795 1796 1797 1798
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1799 1800 1801 1802 1803

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1804
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1805 1806 1807 1808 1809 1810

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
X
xuwei06 已提交
1811 1812 1813 1814 1815 1816
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1817 1818
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1829
        active_type=act.name,
X
xuwei06 已提交
1830
        num_filters=num_repeats,
X
xuwei06 已提交
1831
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1832
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1833 1834 1835 1836 1837
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1838
        activation=act,
Q
qijun 已提交
1839 1840
        parents=[input])

X
xuwei06 已提交
1841

1842 1843 1844
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1845
@layer_support(ERROR_CLIPPING, DROPOUT)
1846 1847 1848 1849 1850 1851 1852 1853
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1854
    the dimension of each instance is M, and the input reshape_size is N, then the
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1925
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1926 1927
    :rtype: LayerOutput
    """
1928
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1929
    assert len(input) == 2
1930 1931 1932 1933 1934 1935 1936
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1937 1938 1939 1940
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1941 1942 1943 1944 1945 1946
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1947 1948


L
liaogang 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1965
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1966

L
liaogang 已提交
1967
    :param   input:        A input layer.
L
liaogang 已提交
1968
    :type    input:        LayerOutput.
L
liaogang 已提交
1969
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1970
    :type    out_size_x:   int|None
L
liaogang 已提交
1971
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1972
    :type    out_size_y:   int|None
L
liaogang 已提交
1973
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1974
    :type    name:         None|basestring
L
liaogang 已提交
1975
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
1976 1977 1978 1979 1980 1981 1982
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
1983
    assert input.num_filters is not None
L
liaogang 已提交
1984
    num_channels = input.num_filters
Q
qijun 已提交
1985 1986 1987 1988 1989 1990 1991
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
1992
                channels=num_channels)),
Q
qijun 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2002

Z
zhangjinchao01 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2030
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2031 2032
    :rtype: LayerOutput
    """
2033 2034 2035
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2036 2037 2038
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2039
        inputs=[weight.name, input.name],
Q
qijun 已提交
2040 2041 2042
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2043 2044 2045 2046 2047 2048


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2049
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2050 2051

    .. math::
2052
       y  = w x
Z
zhangjinchao01 已提交
2053

2054 2055 2056 2057 2058
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2074
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2075 2076
    :rtype: LayerOutput
    """
2077 2078 2079
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2080 2081 2082 2083
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2084 2085 2086
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2087 2088 2089 2090 2091 2092


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2093
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2112
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2113 2114 2115 2116 2117 2118
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2119 2120 2121
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2122 2123


2124 2125
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2126
def rotate_layer(input, height, width, name=None, layer_attr=None):
2127
    """
H
Haonan 已提交
2128 2129
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2130 2131

    .. math::
H
Haonan 已提交
2132
       y(j,i,:) = x(M-i-1,j,:)
2133

H
Haonan 已提交
2134
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2135 2136 2137 2138 2139 2140

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2141 2142
                          height=100,
                          width=100)
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2156 2157 2158
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2159
        width=width,
H
Haonan 已提交
2160 2161 2162 2163 2164 2165 2166 2167
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2168 2169


Z
zhangjinchao01 已提交
2170 2171
@wrap_name_default()
@layer_support()
2172
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2173 2174 2175 2176
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2177
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2178 2179 2180 2181 2182
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2183

2184 2185
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2186

L
Luo Tao 已提交
2187 2188 2189 2190 2191 2192
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2205
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2206 2207
    :rtype: LayerOutput
    """
2208
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2209 2210 2211 2212 2213 2214
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2215
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2216
    else:
2217 2218
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2219 2220 2221 2222 2223 2224
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2225
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2226
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2227

2228

Z
zhangjinchao01 已提交
2229 2230
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2231
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2232
@layer_support()
Q
qijun 已提交
2233 2234
def hsigmoid(input,
             label,
2235
             num_classes=None,
Q
qijun 已提交
2236 2237 2238 2239
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2251
                        label=data_layer)
Z
zhangjinchao01 已提交
2252 2253 2254 2255 2256 2257 2258

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2259
    :type num_classes: int|None
L
luotao02 已提交
2260 2261
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
2262 2263 2264
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2265 2266
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2267 2268
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2269
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2270 2271 2272 2273
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2274 2275 2276 2277 2278 2279 2280 2281 2282
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2283 2284 2285
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2286 2287 2288 2289 2290
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2291 2292
    ipts_for_layer = []
    parents = []
2293
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2294
        assert isinstance(each_input, LayerOutput)
2295
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2296 2297 2298 2299
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2300
    l = Layer(
Z
zhangjinchao01 已提交
2301 2302 2303 2304 2305
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2306 2307 2308
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2309

2310

Z
zhangjinchao01 已提交
2311 2312 2313 2314 2315
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2332 2333
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2334
    """
2335
    Convolution layer for image. Paddle can support both square and non-square
2336
    input currently.
Z
zhangjinchao01 已提交
2337 2338 2339 2340

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2341

2342
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2343
    and non-square input currently.
2344

X
xuwei06 已提交
2345
    The details of convolution transpose layer,
2346 2347 2348
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2349 2350 2351 2352
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2353 2354 2355
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2356
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2357 2358
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2359

L
Luo Tao 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2370 2371 2372 2373
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2374 2375 2376
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2377 2378 2379
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2380
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2381 2382 2383 2384 2385
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2386 2387 2388
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2389 2390
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2391 2392 2393
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2408 2409
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2410
    :param layer_type: specify the layer_type, default is None. If trans=True,
2411 2412
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2413
                       "cudnn_conv"
2414
    :type layer_type: String
D
dangqingqing 已提交
2415
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2416 2417 2418 2419 2420
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2421

Z
zhangjinchao01 已提交
2422
    if filter_size_y is None:
2423 2424 2425 2426 2427 2428
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2429
    if stride_y is None:
2430 2431 2432 2433 2434 2435
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2436
    if padding_y is None:
2437 2438 2439 2440 2441 2442 2443 2444
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2445
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2446 2447 2448 2449
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2450

2451 2452
    if layer_type:
        if trans:
2453
            assert layer_type in ["exconvt", "cudnn_convt"]
2454 2455 2456 2457 2458
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2459

X
xuwei06 已提交
2460
    l = Layer(
Z
zhangjinchao01 已提交
2461
        name=name,
Q
qijun 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2474 2475 2476 2477
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2478
        type=lt,
Q
qijun 已提交
2479 2480 2481 2482 2483 2484 2485 2486
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2487 2488 2489 2490


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2501 2502
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2503 2504 2505 2506 2507 2508 2509
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2538
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2539
    :type padding: int
2540 2541
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2542 2543 2544 2545
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2546
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2547
    :type pool_size: int
2548 2549
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2550 2551
    :param num_channels: number of input channel.
    :type num_channels: int
2552
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2553 2554
                      MaxPooling.
    :type pool_type: BasePoolingType
2555
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2556
    :type stride: int
2557 2558
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2559 2560
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2561 2562 2563 2564
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2565 2566
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2577
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2578
        if (
Y
Yu Yang 已提交
2579
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2580
        else pool_type.name
2581 2582 2583 2584 2585

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2586
    l = Layer(
Z
zhangjinchao01 已提交
2587 2588
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2601
                    padding_y=padding_y))
Q
qijun 已提交
2602
        ],
2603
        ceil_mode=ceil_mode,
Q
qijun 已提交
2604 2605 2606 2607 2608 2609 2610
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2611 2612


Q
qijun 已提交
2613 2614
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2615 2616 2617 2618 2619 2620
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2621 2622 2623 2624 2625
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2626 2627 2628 2629
    The example usage is:

    ..  code-block:: python

2630 2631 2632
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2633 2634
                        pool_type=MaxPooling())

Q
qijun 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2663
    l = Layer(
Q
qijun 已提交
2664 2665
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2666 2667 2668 2669 2670
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2671
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2683 2684 2685 2686
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2687
    l = Layer(
Q
qijun 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2707 2708 2709 2710


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2711 2712 2713 2714 2715 2716
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2717
                      layer_attr=None):
Z
zhangjinchao01 已提交
2718
    """
2719
    Response normalization across feature maps.
D
dangqingqing 已提交
2720 2721
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2722

L
Luo Tao 已提交
2723 2724 2725
    The example usage is:

    ..  code-block:: python
2726

L
Luo Tao 已提交
2727 2728
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2729
    :param name: layer name.
D
dangqingqing 已提交
2730
    :type name: None|basestring
Z
zhangjinchao01 已提交
2731 2732
    :param input: layer's input.
    :type input: LayerOutput
2733
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2734
    :type size: int
D
dangqingqing 已提交
2735
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2736
    :type scale: float
D
dangqingqing 已提交
2737
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2738 2739 2740 2741 2742
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2743
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2744 2745 2746
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2747
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2748 2749 2750


@wrap_bias_attr_default()
2751 2752
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2753 2754
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2755
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2756 2757 2758 2759 2760 2761 2762
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2784 2785 2786
    The example usage is:

    ..  code-block:: python
2787

L
Luo Tao 已提交
2788 2789
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2804
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2832
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2843
    l = Layer(
Z
zhangjinchao01 已提交
2844
        name=name,
Q
qijun 已提交
2845 2846
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2847 2848 2849 2850 2851 2852
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2853
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2854

Q
qijun 已提交
2855 2856 2857 2858 2859 2860 2861
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2889
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2890 2891 2892 2893 2894 2895
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2896 2897 2898
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2899 2900


G
guosheng 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
2937 2938 2939
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
2940
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2941
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
2964 2965 2966
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
2967 2968

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
2969 2970
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2985
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2986 2987 2988 2989 2990 2991
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

2992
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2993 2994 2995 2996 2997 2998 2999
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3000
    l = Layer(
Q
qijun 已提交
3001 3002 3003
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3004 3005
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3006
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3007

Q
qijun 已提交
3008 3009 3010 3011 3012 3013 3014
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3015 3016 3017 3018


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3019
@layer_support(DROPOUT, ERROR_CLIPPING)
3020
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3021 3022 3023 3024
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3025 3026 3027 3028 3029 3030
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
3031 3032 3033
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
3034
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
3035 3036 3037 3038
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3039
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3040 3041 3042 3043 3044 3045 3046 3047
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3048
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3049 3050

    def __is_type__(o, tp):
3051
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3073 3074
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3075

Q
qijun 已提交
3076 3077
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3078

3079 3080
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3081

3082
    layer = Layer(
Q
qijun 已提交
3083 3084
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3085 3086
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3087
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3088
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3089

3090
    sz = layer.config.size
Z
zhangjinchao01 已提交
3091

Q
qijun 已提交
3092 3093 3094 3095 3096 3097 3098 3099
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3100 3101
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3102
@wrap_bias_attr_default(has_bias=False)
3103
@layer_support(DROPOUT, ERROR_CLIPPING)
3104 3105 3106 3107
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3108

3109
    Inputs:
X
xuwei06 已提交
3110
      - a = [a1, a2, ..., am]
3111
      - b = [b1, b2, ..., bn]
3112

X
xuwei06 已提交
3113 3114 3115 3116
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3134 3135 3136 3137
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3159
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3160 3161
def memory(name,
           size,
3162
           memory_name=None,
Q
qijun 已提交
3163 3164 3165 3166
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3187 3188 3189 3190 3191 3192 3193 3194 3195
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3196

3197 3198 3199 3200 3201 3202 3203
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3204 3205 3206
    :type name: basestring
    :param size: size of memory.
    :type size: int
3207 3208 3209
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3210
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3211 3212 3213 3214 3215 3216 3217 3218 3219
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3220
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3231 3232
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3233

3234 3235 3236 3237 3238 3239 3240 3241
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3242 3243

    lout = LayerOutput(
3244
        name=memory_name,
Q
qijun 已提交
3245 3246 3247
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3248 3249 3250 3251
    return lout


@wrap_bias_attr_default()
3252 3253
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3254 3255
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
3256
@layer_support()
Q
qijun 已提交
3257 3258
def lstm_step_layer(input,
                    state,
3259
                    size=None,
Q
qijun 已提交
3260 3261 3262 3263 3264 3265
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3266
    """
3267 3268
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3269 3270 3271

    ..  math::

3272
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3273

3274
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3275

3276
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3277

3278
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3279

L
luotao02 已提交
3280
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3281 3282


L
luotao02 已提交
3283
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3284
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3285
    input vectors.
Z
zhangjinchao01 已提交
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3296 3297
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3298 3299 3300 3301
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
3302 3303
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3322
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3323 3324
    :rtype: LayerOutput
    """
3325 3326 3327

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3328 3329 3330 3331 3332 3333 3334
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3335
        size=state.size,
Q
qijun 已提交
3336 3337
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3338

Q
qijun 已提交
3339 3340 3341 3342 3343 3344 3345
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3346 3347 3348


@wrap_bias_attr_default()
W
wangyang59 已提交
3349
@wrap_param_attr_default()
Q
qijun 已提交
3350
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3351 3352 3353
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3354 3355 3356 3357 3358 3359 3360
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3361
                   param_attr=None,
Q
qijun 已提交
3362
                   layer_attr=None):
Z
zhangjinchao01 已提交
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3373 3374
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3375
    :param layer_attr:
D
dangqingqing 已提交
3376
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3377 3378 3379 3380 3381 3382 3383 3384
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3385 3386 3387 3388
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3389
        # backward model compatibility.
3390
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3391 3392 3393 3394
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3395
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3396
    return LayerOutput(
Q
qijun 已提交
3397 3398
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3399
        parents=[input, output_mem],
Q
qijun 已提交
3400 3401
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3402 3403


Y
Yu Yang 已提交
3404 3405 3406 3407
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3408
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3476 3477 3478 3479
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3480 3481 3482 3483
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3484 3485 3486 3487 3488 3489 3490 3491 3492

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3493
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3494 3495 3496 3497 3498 3499 3500
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3501 3502 3503 3504 3505 3506 3507
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3508

Q
qijun 已提交
3509 3510 3511 3512 3513
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3514 3515 3516 3517 3518 3519 3520


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3521 3522 3523 3524 3525 3526 3527
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3528
    """
3529 3530
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3531

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3559
    :return: LayerOutput object.
3560
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3561
    """
Q
qijun 已提交
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3577 3578 3579 3580 3581 3582


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3583 3584
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3585
    """
3586

Z
zhangjinchao01 已提交
3587 3588 3589
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3590
        assert input.size is not None
Z
zhangjinchao01 已提交
3591
        if size is not None:
3592
            assert input.size == size
Z
zhangjinchao01 已提交
3593 3594


3595
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3596
    """
3597
    DEPRECATED.
Z
zhangjinchao01 已提交
3598 3599 3600 3601 3602 3603 3604 3605
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3606
    return input
Z
zhangjinchao01 已提交
3607 3608 3609


@wrap_name_default("recurrent_group")
3610
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3611
    """
C
caoying03 已提交
3612 3613 3614 3615 3616
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3661 3662
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3663
    :type reverse: bool
3664

3665 3666
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3667 3668 3669 3670 3671 3672 3673 3674 3675

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

D
dangqingqing 已提交
3676
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3677 3678 3679 3680
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3681
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3682
        input = [input]
3683
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3684 3685

    def is_in_links(x):
3686
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3687 3688 3689 3690

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3691
        name=name,
3692 3693
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3694 3695
    in_args = []
    for each_input in input:
3696
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3697
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3698
            mem = memory(
3699
                name=None,
Q
qijun 已提交
3700 3701
                size=each_input.input.size,
                boot_layer=each_input.input)
3702
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3703
            in_args.append(mem)
3704 3705
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3706

Z
zhangjinchao01 已提交
3707 3708 3709 3710 3711
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3712 3713 3714 3715 3716 3717
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3718 3719 3720

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3721
    for layer_out in layer_outs:
3722 3723
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3724 3725
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3726 3727 3728 3729 3730
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3731

Z
zhangjinchao01 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
3760 3761

    def before_real_step(self):
Q
qijun 已提交
3762 3763 3764 3765 3766 3767 3768 3769 3770
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3771 3772 3773
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3774
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3798
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3799 3800 3801 3802
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3813

3814

H
Haonan 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3851

Z
zhangjinchao01 已提交
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3868 3869
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3870 3871 3872 3873 3874 3875
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3876
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3877 3878
    :rtype: LayerOutput
    """
Q
qijun 已提交
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3890 3891 3892


@wrap_name_default()
Q
qijun 已提交
3893 3894 3895 3896 3897 3898 3899
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3900
                num_results_per_sample=None):
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3912
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3913 3914 3915 3916
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

3917 3918 3919 3920 3921
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

3922 3923
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3924 3925
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
3926 3927
                               bos_id=0,
                               eos_id=1,
3928
                               beam_size=5)
3929 3930 3931 3932 3933 3934 3935 3936 3937

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3938
                 step, and it is applied to sequences with arbitrary length by
3939 3940 3941 3942 3943
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
3944 3945
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
3946
                  In beam_search, none of the input's type should be LayerOutput.
3947
    :type input: list
3948 3949 3950
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3951
                   symbol is essential, since it is used to initialize the RNN
3952 3953 3954 3955 3956 3957 3958 3959
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3960 3961
    :param max_length: Max generated sequence length.
    :type max_length: int
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3972 3973
    :return: The generated word index.
    :rtype: LayerOutput
3974 3975
    """

Z
zhangjinchao01 已提交
3976 3977 3978 3979 3980
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
3981
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
3982 3983 3984 3985 3986 3987
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
3988 3989 3990
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
3991
        if isinstance(each_input, BaseGeneratedInput):
3992 3993
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
3994
            generated_input_index = i
3995

Z
zhangjinchao01 已提交
3996 3997 3998
        else:
            real_input.append(each_input)

3999
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4000 4001 4002 4003 4004 4005 4006 4007

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4008 4009 4010 4011 4012 4013
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4014 4015 4016 4017 4018 4019

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4020
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4021 4022
        return predict

4023 4024
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4025

Q
qijun 已提交
4026

4027 4028
def __cost_input__(input, label, weight=None):
    """
4029
    inputs and parents for cost layers.
4030 4031 4032 4033
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
4034
        assert weight.size == 1
4035 4036 4037
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4038

Z
zhangjinchao01 已提交
4039 4040

@wrap_name_default()
L
luotao1 已提交
4041
@layer_support()
4042
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
4043
    """
L
Luo Tao 已提交
4044 4045 4046 4047
    mean squared error cost:

    ..  math::

L
Liu Yiqun 已提交
4048
        \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4049 4050

    :param name: layer name.
4051
    :type name: basestring
Z
zhangjinchao01 已提交
4052
    :param input: Network prediction.
4053
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4054
    :param label: Data label.
4055 4056 4057 4058
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4059 4060
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4061 4062
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4063
    :return: LayerOutput object.
4064
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4065
    """
4066 4067
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4068 4069 4070 4071
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4072
        coeff=coeff,
Q
qijun 已提交
4073
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4074
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4075 4076


L
Luo Tao 已提交
4077 4078 4079
regression_cost = mse_cost


Z
zhangjinchao01 已提交
4080
@wrap_name_default("cost")
4081
@layer_support()
Q
qijun 已提交
4082 4083 4084 4085
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4086
                        evaluator=classification_error_evaluator,
4087 4088
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4089 4090 4091 4092 4093 4094 4095 4096 4097
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4098 4099 4100
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4101
    :param evaluator: Evaluator method.
4102 4103
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4104 4105
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4106
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4107 4108 4109 4110 4111
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4112 4113 4114

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4115 4116 4117 4118
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4119
        coeff=coeff,
Q
qijun 已提交
4120
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4131
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4132

4133
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4134 4135 4136 4137 4138
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4139
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4140

4141

Q
qijun 已提交
4142 4143 4144 4145 4146 4147 4148 4149 4150
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4151 4152
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4163 4164
       op = conv_operator(img=input1,
                          filter=input2,
4165
                          filter_size=3,
Z
zhangjinchao01 已提交
4166 4167 4168
                          num_filters=64,
                          num_channels=64)

4169 4170 4171 4172
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4173 4174
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4175 4176 4177
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4178
    :type filter_size_y: int
4179 4180
    :param num_filters: channel of output data.
    :type num_filters: int
4181 4182
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4183
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4184
    :type stride: int
Z
zhangjinchao01 已提交
4185
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4186
    :type stride_y: int
Z
zhangjinchao01 已提交
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4200

4201 4202
    if num_channels is None:
        num_channels = img.num_filters
4203 4204 4205

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
4206
        filter.size = filter_size * filter_size_y * num_filters * num_channels
4207

4208 4209 4210
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4222

4223
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4224 4225
    return op

Q
qijun 已提交
4226

4227
@wrap_param_attr_default()
Q
qijun 已提交
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4238 4239
                    param_attr=None,
                    trans=False):
4240 4241 4242 4243 4244 4245 4246 4247 4248
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4249
       proj = conv_projection(input=input1,
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4264 4265
    :param num_channels: channel of input data.
    :type num_channels: int
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4278 4279
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4310
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4311 4312 4313 4314 4315
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4316 4317 4318
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4331 4332 4333 4334

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4335

D
dangqingqing 已提交
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4353

D
dangqingqing 已提交
4354
    For example,
4355

4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4377 4378

    The simply usage is:
D
dangqingqing 已提交
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4440
@wrap_name_default()
L
luotao1 已提交
4441 4442
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4454 4455 4456 4457
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4458 4459 4460 4461 4462

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4463
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4464 4465 4466

    :param name: layer name
    :type name: basestring
4467 4468
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4469
    :param b: input layer b.
4470
    :type b: LayerOutput
L
luotao1 已提交
4471 4472
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4473
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4474 4475
    :rtype: LayerOutput
    """
4476 4477
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4478 4479 4480
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4481
        inputs=[a.name, b.name],
Q
qijun 已提交
4482
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4483

Q
qijun 已提交
4484 4485
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4486 4487 4488 4489 4490


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4491
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4492
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4493 4494 4495 4496 4497 4498 4499 4500
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4501 4502 4503 4504 4505
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4506
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4507 4508

    In this formular:
4509 4510
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4511 4512
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4513
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4514 4515 4516 4517 4518

    The simple usage is:

    .. code-block:: python

4519
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4520 4521 4522

    :param name: layer name
    :type name: basestring
4523 4524 4525 4526
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4527
    :param size: the layer dimension.
L
luotao02 已提交
4528
    :type size: int.
Z
zhangjinchao01 已提交
4529 4530 4531
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4532
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4533 4534 4535 4536 4537 4538
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4539
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4540 4541
    :rtype: LayerOutput
    """
4542
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4543 4544 4545 4546 4547 4548
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4549 4550 4551 4552
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4553 4554 4555 4556 4557 4558


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4559
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4560 4561
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4562
                       select=None,
Q
qijun 已提交
4563 4564
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4565 4566 4567
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4568 4569 4570
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4581
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4582 4583 4584 4585 4586

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4587 4588
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4589
                   If is None, acts exactly like fc_layer.
4590
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4603
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4604 4605 4606 4607
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4608
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4609 4610
        param_attr = [param_attr]
    else:
4611
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4612 4613 4614 4615
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4616 4617 4618 4619
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4620
    Layer(
Q
qijun 已提交
4621 4622 4623
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4624 4625 4626
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4627
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4628 4629 4630 4631
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4632 4633 4634 4635 4636 4637 4638
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4639 4640 4641


@wrap_name_default()
L
luotao1 已提交
4642 4643
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4658 4659
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4660
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4661 4662
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4663
    l = Layer(
Z
zhangjinchao01 已提交
4664 4665 4666
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4667 4668 4669
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4670 4671 4672


@wrap_name_default()
L
luotao1 已提交
4673
@layer_support()
Q
qijun 已提交
4674 4675 4676 4677
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4678
                          layer_attr=None):
Z
zhangjinchao01 已提交
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4700 4701
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4702
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4703 4704 4705 4706 4707 4708 4709 4710
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4711 4712 4713
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4714 4715 4716


@wrap_name_default()
L
luotao1 已提交
4717
@layer_support()
Q
qijun 已提交
4718
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4719
    """
4720 4721 4722 4723
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4724 4725 4726

    .. math::

4727
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4728

4729 4730 4731 4732 4733
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4734

4735
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4736 4737

    In this formular:
4738 4739 4740 4741 4742 4743
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4744 4745 4746 4747 4748

    The simple usage is:

    .. code-block:: python

4749
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4750 4751
                                       size=elem_dim)

4752 4753 4754 4755
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4756 4757 4758 4759
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4760 4761
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4762
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4763 4764
    :rtype: LayerOutput
    """
4765 4766 4767 4768
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4769
            size = vectors.size / weights.size
4770 4771
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4772 4773
    Layer(
        name=name,
4774
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4775
        size=size,
4776
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4777 4778 4779
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4780

4781

4782
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4783

4784

Z
zhangjinchao01 已提交
4785
@wrap_name_default()
L
luotao1 已提交
4786
@layer_support()
Z
zhangjinchao01 已提交
4787 4788 4789 4790 4791 4792 4793
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4794
                       num_channels=None,
L
luotao1 已提交
4795 4796
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4797 4798
    """
    Expand feature map to minibatch matrix.
4799
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4800
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4811
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4812 4813
    convolution neural network, and before recurrent neural network.

4814 4815 4816 4817
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4818
       block_expand = block_expand_layer(input=layer,
4819
                                         num_channels=128,
4820 4821 4822 4823 4824
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4825 4826
    :param input: The input layer.
    :type input: LayerOutput
4827 4828
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4843 4844
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4845
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4846 4847
    :rtype: LayerOutput
    """
4848 4849 4850
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4868 4869


4870 4871
@wrap_name_default()
@layer_support()
4872
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4873 4874 4875 4876 4877
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4878
    So groups should be larger than 1, and the num of channels should be able
4879 4880
    to devided by groups.

X
xuwei06 已提交
4881 4882 4883 4884 4885 4886 4887 4888
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

4889
    Please refer to Paper:
4890 4891 4892 4893
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4894

4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4924 4925 4926 4927 4928 4929 4930 4931 4932
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4933 4934


Z
zhangjinchao01 已提交
4935
@wrap_name_default()
L
luotao1 已提交
4936
@layer_support()
Q
qijun 已提交
4937 4938 4939 4940 4941
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4942
              layer_attr=None):
Z
zhangjinchao01 已提交
4943 4944 4945 4946 4947
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4948 4949
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4950 4951
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4952 4953 4954 4955 4956 4957 4958 4959

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
4960
    The example usage is:
Z
zhangjinchao01 已提交
4961 4962 4963 4964 4965 4966 4967 4968

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4969
    :param input: The input layer.
Z
zhangjinchao01 已提交
4970 4971 4972
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4973
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
4974
    :type size: int
4975 4976
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
4977 4978
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4979 4980
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4981
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4982 4983 4984 4985
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
4986 4987 4988 4989 4990
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
4991
    Layer(
4992 4993 4994 4995
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
4996
        inputs=[input.name, label.name],
Q
qijun 已提交
4997
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4998 4999
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5000

5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5012
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5013
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

    To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`,
    using following methods:

    1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api),
    such as :code:`paddle.init(use_gpu=True,
    warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`.

    2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
    on Mac OS. For instance, :code:`export
    LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`.
5031 5032 5033 5034

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5035
    icml2006_GravesFGS06.pdf>`_.
5036 5037 5038

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5039 5040 5041
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5042 5043
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5044
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5045
          'linear' activation is expected instead in the 'input' layer.
5046

C
caoying03 已提交
5047
    The example usage is:
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5093
@wrap_name_default()
5094
@wrap_param_attr_default()
L
luotao1 已提交
5095
@layer_support()
Q
qijun 已提交
5096 5097 5098 5099 5100 5101
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5102
              coeff=1.0,
L
luotao1 已提交
5103
              layer_attr=None):
Z
zhangjinchao01 已提交
5104 5105 5106 5107
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5108
    The example usage is:
Z
zhangjinchao01 已提交
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5119
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5120 5121 5122 5123 5124 5125 5126 5127 5128
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5129 5130
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5131 5132
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5133
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5134 5135 5136 5137 5138
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5139 5140 5141 5142 5143 5144
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5145

Q
qijun 已提交
5146
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5147 5148 5149 5150
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5151 5152 5153 5154
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5155
        coeff=coeff,
Q
qijun 已提交
5156
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5157 5158 5159
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5160 5161 5162 5163
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5164

5165

Z
zhangjinchao01 已提交
5166
@wrap_name_default()
5167
@wrap_param_attr_default()
L
luotao1 已提交
5168
@layer_support()
Q
qijun 已提交
5169 5170 5171 5172 5173
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5174
                       layer_attr=None):
Z
zhangjinchao01 已提交
5175 5176 5177 5178 5179 5180 5181
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5182
    The example usage is:
L
Luo Tao 已提交
5183 5184 5185 5186 5187 5188

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5199 5200
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5201
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5202 5203 5204 5205 5206 5207
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5208
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5209 5210 5211 5212
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5213 5214 5215 5216
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5217
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5218 5219 5220
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5221 5222 5223 5224
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5225

Q
qijun 已提交
5226

Y
Yu Yang 已提交
5227
@wrap_act_default(act=SigmoidActivation())
5228
@wrap_bias_attr_default(has_bias=True)
5229
@wrap_param_attr_default()
5230 5231
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5232 5233
def nce_layer(input,
              label,
C
caoying03 已提交
5234
              num_classes=None,
Y
Yu Yang 已提交
5235
              act=None,
5236
              param_attr=None,
Q
qijun 已提交
5237 5238 5239 5240 5241 5242
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5243 5244 5245 5246 5247 5248 5249 5250 5251
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5252 5253
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5265
    :type num_classes: int
Y
Yu Yang 已提交
5266 5267
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5268 5269
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5270
    :param num_neg_samples: number of negative samples. Default is 10.
5271
    :type num_neg_samples: int
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5285 5286 5287 5288 5289 5290 5291 5292
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5293
    assert isinstance(input, collections.Sequence)
5294

5295 5296
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5297 5298
    if num_classes is None:
        num_classes = label.size
5299 5300 5301
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5302
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5303 5304
    if not isinstance(act, BaseActivation):
        raise TypeError()
5305

5306 5307
    ipts_for_layer = []
    parents = []
5308
    for each_input, attr in zip(input, param_attr):
5309
        assert isinstance(each_input, LayerOutput)
5310
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5321
    l = Layer(
5322 5323 5324 5325
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5326
        active_type=act.name,
5327 5328 5329
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5330 5331
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5332 5333 5334 5335 5336
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5337

5338

Z
zhangjinchao01 已提交
5339 5340 5341
"""
following are cost Layers.
"""
5342 5343


Z
zhangjinchao01 已提交
5344
@wrap_name_default()
L
luotao1 已提交
5345
@layer_support()
Q
qijun 已提交
5346 5347 5348 5349 5350 5351 5352
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5353
    """
5354
    A cost Layer for learning to rank using gradient descent. Details can refer
5355 5356
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5357 5358 5359 5360 5361
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5362
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5363

L
luotao02 已提交
5364
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5365

L
luotao02 已提交
5366
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5367 5368 5369 5370 5371 5372 5373 5374

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5375
    The example usage is:
Z
zhangjinchao01 已提交
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5396 5397
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5398
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5411 5412 5413 5414 5415 5416
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5417

X
xuwei06 已提交
5418
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5419

5420

Z
zhangjinchao01 已提交
5421
@wrap_name_default()
L
luotao1 已提交
5422
@layer_support()
Q
qijun 已提交
5423 5424 5425 5426 5427 5428
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5429 5430 5431
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5432
    The example usage is:
Z
zhangjinchao01 已提交
5433 5434 5435 5436 5437 5438 5439 5440

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5441
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5453 5454 5455
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5456 5457 5458
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5459 5460
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5461
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5462 5463
    :rtype: LayerOutput
    """
5464 5465 5466
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5467 5468 5469 5470 5471 5472 5473
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5474

Q
qijun 已提交
5475 5476
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5477

5478

Z
zhangjinchao01 已提交
5479
@wrap_name_default()
L
luotao1 已提交
5480
@layer_support()
5481 5482 5483 5484 5485 5486
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5487 5488 5489
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5490 5491
    The example usage is:

Z
zhangjinchao01 已提交
5492 5493
    .. code-block:: python

X
xuwei06 已提交
5494
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5495
                            label=label_layer)
Z
zhangjinchao01 已提交
5496 5497 5498 5499 5500 5501 5502

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5503 5504
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5505
    :type coeff: float.
5506 5507 5508 5509
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5510 5511
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5512
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5513 5514 5515
    :rtype: LayerOutput.
    """

5516
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5517 5518 5519
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5520
        inputs=ipts,
Q
qijun 已提交
5521 5522
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5523
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5524

5525

Z
zhangjinchao01 已提交
5526
@wrap_name_default()
L
luotao1 已提交
5527
@layer_support()
Q
qijun 已提交
5528 5529 5530 5531
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5532 5533
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5534 5535
    """
    A loss layer for multi class entropy with selfnorm.
5536
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5537

C
caoying03 已提交
5538 5539
    The example usage is:

Z
zhangjinchao01 已提交
5540 5541
    .. code-block:: python

X
xuwei06 已提交
5542
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5543
                                          label=label_layer)
Z
zhangjinchao01 已提交
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5555 5556
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5557
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5558 5559
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5560 5561 5562 5563 5564 5565 5566
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5567

Q
qijun 已提交
5568 5569 5570 5571 5572
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5573

5574

X
xuwei06 已提交
5575 5576 5577 5578 5579 5580
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5581 5582
    The example usage is:

X
xuwei06 已提交
5583 5584
    .. code-block:: python

L
Luo Tao 已提交
5585
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5596
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5597 5598 5599 5600 5601
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5602

Q
qijun 已提交
5603
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5604 5605


Z
zhangjinchao01 已提交
5606
@wrap_name_default()
L
luotao1 已提交
5607
@layer_support()
5608 5609 5610 5611 5612
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5613
    """
5614 5615 5616 5617 5618 5619 5620 5621
    For classification purposes, a variant of the Huber loss called modified Huber 
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and 
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber 
    loss is defined as:

    .. math:
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1 
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5622

C
caoying03 已提交
5623 5624
    The example usage is:

Z
zhangjinchao01 已提交
5625 5626
    .. code-block:: python

5627
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5628 5629 5630 5631 5632 5633 5634 5635 5636

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5637 5638
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5639
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5640 5641
    :rtype: LayerOutput.
    """
5642 5643 5644
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5645 5646
    Layer(
        name=name,
5647
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
5648 5649 5650
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5651 5652
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5653

5654

Z
zhangjinchao01 已提交
5655
@wrap_name_default()
L
luotao1 已提交
5656
@layer_support()
Q
qijun 已提交
5657 5658 5659 5660
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5661
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5662 5663 5664
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5665 5666
    The example usage is:

Z
zhangjinchao01 已提交
5667 5668
    .. code-block:: python

X
xuwei06 已提交
5669
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5670
                                               label=label_layer)
Z
zhangjinchao01 已提交
5671 5672 5673 5674 5675 5676 5677 5678 5679

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5680 5681
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5682
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5683 5684 5685
    :rtype: LayerOutput
    """

5686 5687
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5704 5705 5706 5707


@wrap_name_default()
@layer_support()
5708
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5709 5710
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5711
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5712 5713 5714 5715 5716 5717 5718 5719 5720

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5721
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5722

D
dangqingqing 已提交
5723 5724 5725
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
5726 5727
    The example usage is:

D
dangqingqing 已提交
5728 5729
    .. code-block:: python

5730 5731
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5732 5733 5734 5735 5736 5737 5738

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5739 5740
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5754
        coeff=coeff,
D
dangqingqing 已提交
5755 5756 5757
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
5777 5778
    The example usage is:

W
wwhu 已提交
5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
5811 5812


5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """
    @TODO(yuyang18): Add comments.

    :param name:
    :param input:
    :param dropout_rate:
    :return:
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
5829 5830


D
dangqingqing 已提交
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
5853

D
dangqingqing 已提交
5854 5855 5856 5857 5858
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
5859

D
dangqingqing 已提交
5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
5903 5904


5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
5924 5925 5926 5927 5928 5929
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

5930 5931 5932 5933 5934
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
5935 5936 5937 5938 5939 5940

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
5941 5942 5943 5944 5945 5946 5947 5948
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

5949
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
5950
    assert isinstance(param_attr, ParameterAttribute)
5951 5952 5953

    l = Layer(
        name=name,
C
caoying03 已提交
5954
        type=LayerType.PRELU,
C
caoying03 已提交
5955
        inputs=Input(input.name, **param_attr.attr),
5956 5957 5958 5959 5960 5961 5962
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
5963 5964


5965
@wrap_name_default()
C
caoying03 已提交
5966
@layer_support(ERROR_CLIPPING, DROPOUT)
5967 5968 5969 5970 5971 5972 5973
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
5974 5975
                     gate_bias_attr=True,
                     inproj_attr=None,
5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
    prodict between :match:`X'` and :math:`\sigma` is finally returned.

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

    :param input: input for this layer.
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
    :param act: activation type of the projected input.
    :type act: BaseActivation
    :param name: name of this layer.
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
    :type gate_attr: ExtraLayerAttribute|None
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
    :type gate_param_attr: ParameterAttribute|None
C
caoying03 已提交
6012 6013 6014 6015 6016 6017
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
    :type gate_bias_attr: ParameterAttribute|None
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type inproj_attr: ExtraLayerAttribute|None
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
    :type inproj_param_attr: ParameterAttribute|None
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
    :type inproj_bias_attr: ParameterAttribute|None
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6040
        layer_attr=inproj_attr,
6041 6042 6043 6044 6045 6046 6047 6048 6049
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6050
        param_attr=gate_param_attr,
6051 6052 6053 6054 6055
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6056 6057


6058 6059
@wrap_name_default()
@layer_support()
6060
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6061
    """
6062
    The crop layer crops images by offset and shape. User can set crop shape by
6063
    args 'shape' explicitly or by reference input layer.
6064

6065 6066 6067
    The example usage is:

    .. code-block:: python
W
whs 已提交
6068
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6069 6070 6071 6072

    :param input: The input layer.If two inputs were setted,
                    the second input will be regarded as reference input
    :type input: LayerOutput or Sequence
6073 6074
    :param offset: The crop offset
    :type offset: Sequence
6075 6076 6077 6078 6079 6080 6081
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6082
    :type shape: Sequence | None
6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
    :param name: Name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6105 6106


C
caoying03 已提交
6107 6108
@wrap_name_default()
@layer_support()
6109
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6110
    """
6111
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6112
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6113

C
caoying03 已提交
6114 6115 6116
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6117 6118 6119 6120

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6121 6122

        sub_nest_seq = sub_nested_seq_layer(input=[data, selected_indices])
6123

C
caoying03 已提交
6124

6125 6126 6127
    :param input: A nested sequence.
    :type input: LayerOutput
    :param selected_indices: a set of sequence indices in the nested sequence.
C
caoying03 已提交
6128 6129 6130 6131 6132 6133
    :type input: LayerOutput
    :param name: name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6134

6135 6136 6137 6138 6139 6140 6141
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6142
    l = Layer(
6143 6144
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6145 6146 6147 6148 6149 6150 6151
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6152 6153


G
guosheng 已提交
6154
@wrap_name_default("clip")
6155
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6156 6157 6158 6159 6160 6161 6162 6163 6164
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6165
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6166 6167 6168 6169 6170

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
6171 6172 6173 6174
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6175 6176
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6177 6178 6179 6180 6181
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6182 6183
        min=min,
        max=max)
G
guosheng 已提交
6184 6185
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6186 6187 6188 6189 6190


@wrap_name_default()
@layer_support()
def kmax_sequence_score_layer(input, name=None, beam_size=1):
6191
    """
C
caoying03 已提交
6192
    This layer accepts one input which are scores over a sequence or a nested
6193 6194 6195 6196 6197 6198 6199 6200 6201
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

        kmax_indices = kmax_sequence_score_layer(input=input_layer, beam_size)


    :param name: The Layer Name.
    :type name: basestring
C
caoying03 已提交
6202
    :param input: The input layer. It stores scores over a sequence or a nested
6203 6204 6205 6206 6207 6208 6209
        sequence and its size must be 1.
    :type input: LayerOutput.
    :param beam_size: squence indices with top beam_size scores are returned.
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6210
    assert isinstance(input, LayerOutput), ("kmax_sequence_score_layer "
6211
                                            "accepts only one input.")
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
    assert input.size == 1, (
        "input of kmax_sequence_score_layer is a score"
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)