Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
3e7819c2
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
3e7819c2
编写于
7月 19, 2017
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
1. Reading image shape from input data instead of image_config
2. Add crop layer unitest 3. Fix bugs
上级
de5ded6b
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
113 addition
and
99 deletion
+113
-99
CMakeLists.txt
CMakeLists.txt
+1
-1
paddle/function/CropOp.cpp
paddle/function/CropOp.cpp
+20
-14
paddle/function/CropOp.h
paddle/function/CropOp.h
+2
-0
paddle/function/CropOpGpu.cu
paddle/function/CropOpGpu.cu
+12
-12
paddle/gserver/layers/CropLayer.cpp
paddle/gserver/layers/CropLayer.cpp
+50
-39
paddle/gserver/layers/CropLayer.h
paddle/gserver/layers/CropLayer.h
+2
-3
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+0
-23
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+5
-7
python/paddle/trainer_config_helpers/tests/configs/test_crop.py
.../paddle/trainer_config_helpers/tests/configs/test_crop.py
+21
-0
未找到文件。
CMakeLists.txt
浏览文件 @
3e7819c2
...
...
@@ -13,7 +13,7 @@
# limitations under the License
cmake_minimum_required
(
VERSION 3.0
)
SET
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-ldl -lpthread"
)
set
(
CMAKE_MODULE_PATH
${
CMAKE_MODULE_PATH
}
"
${
CMAKE_CURRENT_SOURCE_DIR
}
/cmake"
)
set
(
PROJ_ROOT
${
CMAKE_CURRENT_SOURCE_DIR
}
)
set
(
PROJ_BINARY_ROOT
${
CMAKE_CURRENT_BINARY_DIR
}
)
...
...
paddle/function/CropOp.cpp
浏览文件 @
3e7819c2
...
...
@@ -22,11 +22,10 @@ template <>
void
Crop
<
DEVICE_TYPE_CPU
>
(
real
*
outputs
,
const
real
*
inputs
,
const
TensorShape
inShape
,
const
TensorShape
outShape
,
const
FuncConfig
&
conf
)
{
std
::
vector
<
uint32_t
>
crop_corner
=
conf
.
get
<
std
::
vector
<
uint32_t
>>
(
"crop_corner"
);
std
::
vector
<
uint32_t
>
crop_shape
=
conf
.
get
<
std
::
vector
<
uint32_t
>>
(
"crop_shape"
);
int
cCrop
=
crop_corner
[
1
];
int
hCrop
=
crop_corner
[
2
];
int
wCrop
=
crop_corner
[
3
];
...
...
@@ -36,9 +35,9 @@ void Crop<DEVICE_TYPE_CPU>(real* outputs,
int
inH
=
inShape
[
2
];
int
inW
=
inShape
[
3
];
int
outC
=
crop_s
hape
[
1
];
int
outH
=
crop_s
hape
[
2
];
int
outW
=
crop_s
hape
[
3
];
int
outC
=
outS
hape
[
1
];
int
outH
=
outS
hape
[
2
];
int
outW
=
outS
hape
[
3
];
for
(
int
n
=
0
;
n
<
num
;
n
++
)
{
for
(
int
c
=
0
;
c
<
outC
;
c
++
)
{
...
...
@@ -54,12 +53,11 @@ void Crop<DEVICE_TYPE_CPU>(real* outputs,
template
<
>
void
CropGrad
<
DEVICE_TYPE_CPU
>
(
const
real
*
inGrad
,
real
*
outGrad
,
const
TensorShape
inShape
,
const
TensorShape
outShape
,
const
FuncConfig
&
conf
)
{
std
::
vector
<
uint32_t
>
crop_corner
=
conf
.
get
<
std
::
vector
<
uint32_t
>>
(
"crop_corner"
);
std
::
vector
<
uint32_t
>
crop_shape
=
conf
.
get
<
std
::
vector
<
uint32_t
>>
(
"crop_shape"
);
int
cCrop
=
crop_corner
[
1
];
int
hCrop
=
crop_corner
[
2
];
int
wCrop
=
crop_corner
[
3
];
...
...
@@ -69,9 +67,9 @@ void CropGrad<DEVICE_TYPE_CPU>(const real* inGrad,
int
outH
=
outShape
[
2
];
int
outW
=
outShape
[
3
];
int
inC
=
crop_s
hape
[
1
];
int
inH
=
crop_s
hape
[
2
];
int
inW
=
crop_s
hape
[
3
];
int
inC
=
inS
hape
[
1
];
int
inH
=
inS
hape
[
2
];
int
inW
=
inS
hape
[
3
];
for
(
int
n
=
0
;
n
<
num
;
n
++
)
{
for
(
int
c
=
0
;
c
<
inC
;
c
++
)
{
...
...
@@ -123,9 +121,13 @@ public:
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ASSIGN_TO
);
TensorShape
inShape
=
inputs
[
0
].
shape
();
TensorShape
outShape
=
outputs
[
0
].
shape
();
Crop
<
Device
>
(
outputs
[
0
].
data
<
real
>
(),
inputs
[
0
].
data
<
real
>
(),
inShape
,
conf_
);
Crop
<
Device
>
(
outputs
[
0
].
data
<
real
>
(),
inputs
[
0
].
data
<
real
>
(),
inShape
,
outShape
,
conf_
);
}
private:
...
...
@@ -152,9 +154,13 @@ public:
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
TensorShape
outShape
=
outputs
[
0
].
shape
();
TensorShape
inShape
=
inputs
[
0
].
shape
();
CropGrad
<
Device
>
(
inputs
[
0
].
data
<
real
>
(),
outputs
[
0
].
data
<
real
>
(),
outShape
,
conf_
);
CropGrad
<
Device
>
(
inputs
[
0
].
data
<
real
>
(),
outputs
[
0
].
data
<
real
>
(),
inShape
,
outShape
,
conf_
);
}
private:
...
...
paddle/function/CropOp.h
浏览文件 @
3e7819c2
...
...
@@ -31,6 +31,7 @@ template <DeviceType Device>
void
Crop
(
real
*
outputs
,
const
real
*
inputs
,
const
TensorShape
inShape
,
const
TensorShape
outShape
,
const
FuncConfig
&
conf
);
/**
...
...
@@ -45,5 +46,6 @@ template <DeviceType Device>
void
CropGrad
(
const
real
*
inGrad
,
real
*
outGrad
,
const
TensorShape
inShape
,
const
TensorShape
outShape
,
const
FuncConfig
&
conf
);
}
// namespace paddle
paddle/function/CropOpGpu.cu
浏览文件 @
3e7819c2
...
...
@@ -37,9 +37,9 @@ template <>
void
Crop
<
DEVICE_TYPE_GPU
>
(
real
*
outputs
,
const
real
*
inputs
,
const
TensorShape
inShape
,
const
TensorShape
outShape
,
const
FuncConfig
&
conf
)
{
std
::
vector
<
uint32_t
>
crop_corner
=
conf
.
get
<
std
::
vector
<
uint32_t
>>
(
"crop_corner"
);
std
::
vector
<
uint32_t
>
crop_shape
=
conf
.
get
<
std
::
vector
<
uint32_t
>>
(
"crop_shape"
);
int
cropC
=
crop_corner
[
1
];
int
cropH
=
crop_corner
[
2
];
int
cropW
=
crop_corner
[
3
];
...
...
@@ -49,14 +49,14 @@ void Crop<DEVICE_TYPE_GPU>(real* outputs,
int
inH
=
inShape
[
2
];
int
inW
=
inShape
[
3
];
int
outC
=
crop_s
hape
[
1
];
int
outH
=
crop_s
hape
[
2
];
int
outW
=
crop_s
hape
[
3
];
int
outC
=
outS
hape
[
1
];
int
outH
=
outS
hape
[
2
];
int
outW
=
outS
hape
[
3
];
size_t
nth
=
num
*
outC
*
outH
*
outW
;
int
blockSize
=
1024
;
int
gridSize
=
(
nth
+
blockSize
-
1
)
/
blockSize
;
KeCrop
<<<
gridSize
,
blockSize
,
0
,
STREAM_DEFAULT
>>>
(
outputs
,
inputs
,
inC
,
inH
,
inW
,
cropC
,
cropH
,
cropW
,
outC
,
outH
,
outW
,
nth
);
...
...
@@ -75,7 +75,7 @@ __global__ void KeCropDiff(const real* inGrad, real* outGrad,
const
int
n
=
idx
/
inW
/
inH
/
inC
;
const
int
off
=
((
n
*
outC
+
c
+
cropC
)
*
outH
+
h
+
cropH
)
*
outW
+
cropW
+
w
;
outGrad
[
off
]
+=
inGrad
[
idx
];
}
}
...
...
@@ -83,10 +83,10 @@ __global__ void KeCropDiff(const real* inGrad, real* outGrad,
template
<
>
void
CropGrad
<
DEVICE_TYPE_GPU
>
(
const
real
*
inGrad
,
real
*
outGrad
,
const
TensorShape
inShape
,
const
TensorShape
outShape
,
const
FuncConfig
&
conf
)
{
std
::
vector
<
uint32_t
>
crop_corner
=
conf
.
get
<
std
::
vector
<
uint32_t
>>
(
"crop_corner"
);
std
::
vector
<
uint32_t
>
crop_shape
=
conf
.
get
<
std
::
vector
<
uint32_t
>>
(
"crop_shape"
);
int
cropC
=
crop_corner
[
1
];
int
cropH
=
crop_corner
[
2
];
int
cropW
=
crop_corner
[
3
];
...
...
@@ -96,10 +96,10 @@ void CropGrad<DEVICE_TYPE_GPU>(const real* inGrad,
int
outH
=
outShape
[
2
];
int
outW
=
outShape
[
3
];
int
inC
=
crop_s
hape
[
1
];
int
inH
=
crop_s
hape
[
2
];
int
inW
=
crop_s
hape
[
3
];
int
inC
=
inS
hape
[
1
];
int
inH
=
inS
hape
[
2
];
int
inW
=
inS
hape
[
3
];
size_t
nth
=
num
*
inC
*
inH
*
inW
;
int
blockSize
=
1024
;
int
gridSize
=
(
nth
+
blockSize
-
1
)
/
blockSize
;
...
...
paddle/gserver/layers/CropLayer.cpp
浏览文件 @
3e7819c2
...
...
@@ -22,7 +22,8 @@ bool CropLayer::init(const LayerMap& layerMap,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
CHECK_LE
(
static_cast
<
int
>
(
inputLayers_
.
size
()),
2
);
CHECK_GE
(
static_cast
<
int
>
(
inputLayers_
.
size
()),
1
);
crop_axis_
=
config_
.
axis
();
for
(
int
i
=
0
;
i
<
config_
.
offset_size
();
i
++
)
{
crop_offsets_
.
push_back
(
config_
.
offset
(
i
));
...
...
@@ -36,8 +37,14 @@ bool CropLayer::init(const LayerMap& layerMap,
?
input0_img_conf
.
img_size_y
()
:
input0_img_conf
.
img_size
(),
input0_img_conf
.
img_size
()});
// 2. get output shape from input_1 or crop shap conf
if
(
config_
.
inputs_size
()
==
2
)
{
// 2. get target dims from config
if
(
config_
.
inputs_size
()
==
1
)
{
targetDims_
=
TensorShape
({
config_
.
shape
(
0
),
config_
.
shape
(
1
),
config_
.
shape
(
2
),
config_
.
shape
(
3
)});
}
else
{
// 2. get input_1 shape
auto
&
input1_img_conf
=
config_
.
inputs
(
1
).
image_conf
();
targetDims_
=
TensorShape
({
0
,
input1_img_conf
.
channels
(),
...
...
@@ -45,24 +52,10 @@ bool CropLayer::init(const LayerMap& layerMap,
?
input1_img_conf
.
img_size_y
()
:
input1_img_conf
.
img_size
(),
input1_img_conf
.
img_size
()});
}
else
{
targetDims_
=
TensorShape
({
config_
.
shape
(
0
),
config_
.
shape
(
1
),
config_
.
shape
(
2
),
config_
.
shape
(
3
)});
}
// 3. get final crop
shape
// 3. get final crop
corner
int
dimSize
=
4
;
for
(
int
i
=
0
;
i
<
dimSize
;
i
++
)
{
if
(
i
>=
crop_axis_
)
{
crop_shape_
.
push_back
(
targetDims_
[
i
]);
}
else
{
crop_shape_
.
push_back
(
inDims_
[
i
]);
}
}
// 4. get final crop corner
crop_corner_
=
{
0
,
0
,
0
,
0
};
for
(
int
i
=
0
;
i
<
dimSize
;
i
++
)
{
if
(
i
>=
crop_axis_
)
{
...
...
@@ -75,43 +68,61 @@ bool CropLayer::init(const LayerMap& layerMap,
}
outDims_
=
TensorShape
(
4
);
setOutDims
(
0
);
createFunction
(
forward_
,
"Crop"
,
FuncConfig
()
.
set
(
"crop_corner"
,
crop_corner_
)
.
set
(
"crop_shape"
,
crop_shape_
));
createFunction
(
backward_
,
"CropGrad"
,
FuncConfig
()
.
set
(
"crop_corner"
,
crop_corner_
)
.
set
(
"crop_shape"
,
crop_shape_
));
createFunction
(
forward_
,
"Crop"
,
FuncConfig
().
set
(
"crop_corner"
,
crop_corner_
));
createFunction
(
backward_
,
"CropGrad"
,
FuncConfig
().
set
(
"crop_corner"
,
crop_corner_
));
return
true
;
}
void
CropLayer
::
setOutDims
(
const
size_t
batchSize
)
{
outDims_
.
reshape
({
batchSize
,
crop_shape_
[
1
],
crop_shape_
[
2
],
crop_shape_
[
3
]});
void
CropLayer
::
setOutDims
()
{
MatrixPtr
input
=
inputLayers_
[
1
]
->
getOutputValue
();
size_t
batchSize
=
input
->
getHeight
();
// get target dims from input_1
if
(
config_
.
inputs_size
()
==
2
)
{
targetDims_
.
setDim
(
0
,
batchSize
);
int
ch
=
config_
.
inputs
(
0
).
image_conf
().
channels
();
if
(
ch
!=
0
)
targetDims_
.
setDim
(
1
,
ch
);
int
h
=
inputLayers_
[
1
]
->
getOutput
().
getFrameHeight
();
if
(
h
!=
0
)
targetDims_
.
setDim
(
2
,
h
);
int
w
=
inputLayers_
[
1
]
->
getOutput
().
getFrameWidth
();
if
(
w
!=
0
)
targetDims_
.
setDim
(
3
,
w
);
}
// get final crop shape from target dims and crop axis
std
::
vector
<
uint32_t
>
crop_shape
;
int
dimSize
=
4
;
for
(
int
i
=
0
;
i
<
dimSize
;
i
++
)
{
if
(
i
>=
crop_axis_
)
{
crop_shape
.
push_back
(
targetDims_
[
i
]);
}
else
{
crop_shape
.
push_back
(
inDims_
[
i
]);
}
}
outDims_
.
reshape
(
{
crop_shape
[
0
],
crop_shape
[
1
],
crop_shape
[
2
],
crop_shape
[
3
]});
output_
.
setFrameHeight
(
crop_shape
[
2
]);
output_
.
setFrameWidth
(
crop_shape
[
3
]);
}
void
CropLayer
::
setTensorDim
(
const
size_t
batchSize
)
{
CHECK_EQ
(
static_cast
<
int
>
(
inputLayers_
.
size
()),
2
);
void
CropLayer
::
setInDims
()
{
MatrixPtr
input
=
inputLayers_
[
0
]
->
getOutputValue
();
size_t
batchSize
=
input
->
getHeight
();
inDims_
.
setDim
(
0
,
batchSize
);
int
h
=
inputLayers_
[
0
]
->
getOutput
().
getFrameHeight
();
if
(
h
!=
0
)
inDims_
.
setDim
(
2
,
h
);
int
w
=
inputLayers_
[
0
]
->
getOutput
().
getFrameWidth
();
if
(
w
!=
0
)
inDims_
.
setDim
(
3
,
w
);
setOutDims
(
batchSize
);
}
void
CropLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
MatrixPtr
input
=
inputLayers_
[
0
]
->
getOutputValue
();
size_t
batchSize
=
input
->
getHeight
();
setTensorDim
(
batchSize
);
setInDims
();
setOutDims
();
int
size
=
outDims_
[
1
]
*
outDims_
[
2
]
*
outDims_
[
3
];
resetOutput
(
batchSize
,
size
);
resetOutput
(
outDims_
[
0
]
,
size
);
MatrixPtr
outV
=
getOutputValue
();
REGISTER_TIMER_INFO
(
"CropForward"
,
getName
().
c_str
());
...
...
paddle/gserver/layers/CropLayer.h
浏览文件 @
3e7819c2
...
...
@@ -39,13 +39,12 @@ public:
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
)
override
;
protected:
void
setOutDims
(
const
size_t
batchSize
);
void
set
TensorDim
(
const
size_t
batchSize
);
void
setOutDims
();
void
set
InDims
(
);
int32_t
crop_axis_
;
std
::
vector
<
uint32_t
>
crop_offsets_
;
std
::
vector
<
uint32_t
>
crop_corner_
;
std
::
vector
<
uint32_t
>
crop_shape_
;
TensorShape
inDims_
;
TensorShape
targetDims_
;
TensorShape
outDims_
;
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
3e7819c2
...
...
@@ -2005,29 +2005,6 @@ class CropLayer(LayerBase):
image_conf
.
img_size_y
=
input_layer
.
height
image_conf
.
channels
=
input_layer
.
size
/
(
input_layer
.
width
*
input_layer
.
height
)
out_ch
=
image_conf
.
channels
out_h
=
image_conf
.
img_size
out_w
=
image_conf
.
img_size_y
if
len
(
self
.
inputs
)
==
2
:
# get channels, width and height from input_1 layer
input_layer
=
self
.
get_input_layer
(
1
)
image_conf
=
self
.
config
.
inputs
[
1
].
image_conf
image_conf
.
img_size
=
input_layer
.
width
image_conf
.
img_size_y
=
input_layer
.
height
image_conf
.
channels
=
input_layer
.
size
/
(
input_layer
.
width
*
input_layer
.
height
)
out_ch
=
image_conf
.
channels
out_h
=
image_conf
.
img_size_y
out_w
=
image_conf
.
img_size
else
:
# set channels, width and heigth of current layer
if
len
(
shape
)
>
2
:
out_ch
=
shape
[
-
3
]
if
len
(
shape
)
>
1
:
out_h
=
shape
[
-
2
]
if
len
(
shape
)
>
0
:
out_w
=
shape
[
-
1
]
self
.
set_cnn_layer
(
name
,
out_h
,
out_w
,
out_ch
)
@
config_layer
(
'batch_norm'
)
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
3e7819c2
...
...
@@ -5881,9 +5881,9 @@ def prelu_layer(input,
@
wrap_name_default
()
@
layer_support
()
def
crop_layer
(
input
,
axis
,
offset
,
shape
=
None
,
name
=
None
,
layer_attr
=
None
):
def
crop_layer
(
input
,
offset
,
axis
=
2
,
shape
=
None
,
name
=
None
,
layer_attr
=
None
):
"""
The crop layer crop images by offset and shape. User can set crop shape by
The crop layer crop
s
images by offset and shape. User can set crop shape by
args 'shape' explicitly or by reference input layer.
...
...
@@ -5896,16 +5896,16 @@ def crop_layer(input, axis, offset, shape=None, name=None, layer_attr=None):
:param input: The input layer.If two inputs were setted,
the second input will be regarded as reference input
:type input: LayerOutput or Sequence
:param offset: The crop offset
:type offset: Sequence
:param axis: start axis to be cropped. To image input layer:
- 0: batch size
- 1: channels
- 2: height
- 3: width
:type partial_sum: int
:param offset: The crop offset
:type offset: Sequence
:param shape: The shape to be cropped. Default is None.
:type shape: S
q
quence | None
:type shape: S
e
quence | None
:param name: Name of this layer.
:type name: basestring
:return: LayerOutput object.
...
...
@@ -5913,8 +5913,6 @@ def crop_layer(input, axis, offset, shape=None, name=None, layer_attr=None):
"""
if
isinstance
(
input
,
LayerOutput
):
input
=
[
input
]
elif
isinstance
(
input
,
Projection
):
input
=
[
input
]
else
:
assert
isinstance
(
input
,
collections
.
Sequence
)
l
=
Layer
(
...
...
python/paddle/trainer_config_helpers/tests/configs/test_crop.py
0 → 100644
浏览文件 @
3e7819c2
from
paddle.trainer_config_helpers
import
*
settings
(
batch_size
=
1000
,
learning_rate
=
1e-5
)
data
=
data_layer
(
name
=
'data'
,
size
=
2016
,
height
=
48
,
width
=
42
)
refernce_data
=
data_layer
(
name
=
'data'
,
size
=
768
,
height
=
16
,
width
=
16
)
conv
=
img_conv_layer
(
input
=
data
,
filter_size
=
3
,
num_channels
=
1
,
num_filters
=
16
,
padding
=
1
,
act
=
LinearActivation
(),
bias_attr
=
True
)
pool
=
img_pool_layer
(
input
=
conv
,
pool_size
=
2
,
stride
=
2
,
pool_type
=
MaxPooling
())
crop
=
crop_layer
(
input
=
[
pool
,
refernce_data
],
axis
=
2
)
outputs
(
pad
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录