OptimizerConfig.proto 4.2 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7
syntax = "proto2";
 
option optimize_for = LITE_RUNTIME;

package paddle;

message SGDConfig {
D
dzhwinter 已提交
8
  // SGD
D
dzhwinter 已提交
9 10 11 12 13 14
  // momentum: float >= 0. Parameter updates momentum.
  // decay: float >= 0. Learning rate decay over each update.
  // nesterov: boolean. Whether to apply Nesterov momentum.
  optional double momentum = 21 [default = 0.0];
  optional double decay = 23 [default = 0.0];
  optional bool nesterov =24 [default = false];
D
dzhwinter 已提交
15

16
}
D
dzhwinter 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55


message AdadeltaConfig {
  // Adadelta
  // It is recommended to leave it at the default value.
  // rho: float >= 0.
  // epsilon: float >= 0. Fuzz factor.
  // decay: float >= 0. Learning rate decay over each update.

  // reference : [Adadelta - an adaptive learning rate method](http://arxiv.org/abs/1212.5701)
  optional double rho = 33 [default = 0.90];
  optional double epsilon = 31 [default = 1e-5];
  optional double decay = 32 [default = 0.0];

}

message AdagradConfig {
// Adagrad
// epsilon: float >= 0.
// decay: float >= 0. Learning rate decay over each update.

// reference : [Adaptive Subgradient Methods for Online Learning and Stochastic Optimization](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
  optional double epsilon = 41 [default = 1e-5];
  optional double decay = 42 [default = 0.0];
}

message AdamConfig {
  // Adaj
  // beta_1: float, 0 < beta < 1. Generally close to 1.
  // beta_2: float, 0 < beta < 1. Generally close to 1.
  // epsilon: float >= 0. Fuzz factor.
  // decay: float >= 0. Learning rate decay over each update.
  // reference : [Adam - A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980v8)
  optional double beta_1 = 41;
  optional double beta_2 = 42;
  optional double epsilon = 43;
  optional double decay = 44;
}

D
dzhwinter 已提交
56 57
message ConstLr {
  // learninRate Policy
D
dzhwinter 已提交
58
  required double learning_rate = 1 [default = 1.0];
D
dzhwinter 已提交
59 60 61
}

message LinearLr {
D
dzhwinter 已提交
62
  // learninRate Policy
D
dzhwinter 已提交
63 64 65
  required double learning_rate = 1 [default = 1.0];
  optional double lr_decay_a = 2;
  optional double lr_decay_b = 3;
D
dzhwinter 已提交
66 67
}

68 69 70 71 72 73 74 75 76 77 78 79 80
message TensorProto {
enum DataType {
  PADDLE_ELEMENT_TYPE_INT32 = 0;
  PADDLE_ELEMENT_TYPE_UINT32 = 1;
  PADDLE_ELEMENT_TYPE_INT64 = 2;
  PADDLE_ELEMENT_TYPE_UINT64 = 3;
  PADDLE_ELEMENT_TYPE_FLOAT32 = 4;
  PADDLE_ELEMENT_TYPE_FLOAT64 = 5;
}
  required DataType data_type = 1;
  repeated bytes content = 2;
}

D
dzhwinter 已提交
81 82
message SGDOptimizerState {
  // learning rate policy
D
dzhwinter 已提交
83 84 85 86
  optional double learning_rate = 101;
  optional double lr_decay_a = 102;
  optional double lr_decay_b = 103;
  optional double num_sample_passed = 104;
D
dzhwinter 已提交
87 88 89 90
  // state
  optional TensorProto parameter = 1;
  optional TensorProto momentums = 2;
}
D
dzhwinter 已提交
91

D
dzhwinter 已提交
92 93 94 95 96 97 98 99
message AdadeltaOptimizerState {
  // learning rate policy
  optional double learning_rate = 101;
  optional double lr_decay_a = 102;
  optional double lr_decay_b = 103;
  optional double num_sample_passed = 104;
  // state
  optional TensorProto parameter = 1;
D
dzhwinter 已提交
100 101 102
  optional TensorProto accum_gradient = 2;
  optional TensorProto accum_delta = 3;
  optional TensorProto update_delta = 4;
D
dzhwinter 已提交
103
}
D
dzhwinter 已提交
104

D
dzhwinter 已提交
105 106 107 108 109 110 111 112 113 114
message AdagradOptimizerState {
  // learning rate policy
  optional double learning_rate = 101;
  optional double lr_decay_a = 102;
  optional double lr_decay_b = 103;
  optional double num_sample_passed = 104;
  // state
  optional TensorProto parameter = 1;
  optional TensorProto accum_gradient = 2;
}
D
dzhwinter 已提交
115

D
dzhwinter 已提交
116 117 118 119 120 121 122 123 124 125
message AdamOptimizerState {
  // learning rate policy
  optional double learning_rate = 101;
  optional double lr_decay_a = 102;
  optional double lr_decay_b = 103;
  optional double num_sample_passed = 104;
  // state
  optional TensorProto parameter = 1;
  optional TensorProto momentums = 2;
  optional TensorProto velocitys = 3;
126
}
D
dzhwinter 已提交
127 128

message OptimizerConfig {
D
dzhwinter 已提交
129 130 131 132 133 134 135
  enum Optimizer {
   SGD = 1;
   Adadelta = 2;
   Adagrad = 3;
   Adam = 4;
  }
  required Optimizer optimizer = 1;
D
dzhwinter 已提交
136 137 138 139 140
  optional SGDConfig sgd = 3;
  optional AdadeltaConfig adadelta = 4;
  optional AdagradConfig adagrad = 5;
  optional AdamConfig adam = 6;

D
dzhwinter 已提交
141 142 143 144 145
  enum LrPolicy {
   ConstLr = 0;
   LinearLr = 1;
  }
  required LrPolicy lr_policy = 11;
D
dzhwinter 已提交
146
  optional ConstLr const_lr = 12;
D
dzhwinter 已提交
147
  optional LinearLr linear_lr = 13;
D
dzhwinter 已提交
148 149

  // common config of optimizer
D
dzhwinter 已提交
150 151 152 153
  // gradient clip when L2 exceeding value
  optional double clip_norm = 101;
  // gradient clip when L1 exceeding value
  optional double clip_value = 102;
D
dzhwinter 已提交
154
}