Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e4567962
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e4567962
编写于
6月 10, 2017
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"update with comment"
上级
f5ff2838
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
210 addition
and
95 deletion
+210
-95
paddle/optimizer/adadelta_optimizer.cc
paddle/optimizer/adadelta_optimizer.cc
+35
-9
paddle/optimizer/adadelta_optimizer.h
paddle/optimizer/adadelta_optimizer.h
+14
-4
paddle/optimizer/adagrad_optimizer.cc
paddle/optimizer/adagrad_optimizer.cc
+3
-7
paddle/optimizer/adagrad_optimizer.h
paddle/optimizer/adagrad_optimizer.h
+9
-6
paddle/optimizer/adam_optimizer.cc
paddle/optimizer/adam_optimizer.cc
+28
-0
paddle/optimizer/adam_optimizer.h
paddle/optimizer/adam_optimizer.h
+6
-3
paddle/optimizer/lr_policy.h
paddle/optimizer/lr_policy.h
+7
-0
paddle/optimizer/optimizer.cc
paddle/optimizer/optimizer.cc
+6
-5
paddle/optimizer/parameter_optimizer.cc
paddle/optimizer/parameter_optimizer.cc
+18
-16
paddle/optimizer/parameter_optimizer.h
paddle/optimizer/parameter_optimizer.h
+11
-8
paddle/optimizer/serialization.h
paddle/optimizer/serialization.h
+12
-0
paddle/optimizer/sgd_optimizer.h
paddle/optimizer/sgd_optimizer.h
+14
-8
paddle/optimizer/sgd_optmizer.cc
paddle/optimizer/sgd_optmizer.cc
+16
-23
proto/OptimizerConfig.proto
proto/OptimizerConfig.proto
+31
-6
未找到文件。
paddle/optimizer/adadelta_optimizer.cc
浏览文件 @
e4567962
...
...
@@ -5,14 +5,6 @@
namespace
paddle
{
namespace
optimizer
{
void
AdadeltaOptimizer
::
set_weight
(
Tensor
*
p
)
{
parameter_
=
p
;
size_t
size
=
p
->
size
();
accum_gradient_
=
new
Tensor
(
size
);
accum_delta_
=
new
Tensor
(
size
);
update_delta_
=
new
Tensor
(
size
);
}
void
AdadeltaOptimizer
::
Update
(
const
Tensor
*
gradient
)
{
num_sample_passed_
+=
1
;
double
learning_rate
=
lr_policy_
->
LearningRate
(
num_sample_passed_
);
...
...
@@ -32,5 +24,39 @@ void AdadeltaOptimizer::Update(const Tensor* gradient) {
param
[
i
]
-=
learning_rate
*
update_d
[
i
]
+
learning_rate
*
decay_
*
param
[
i
];
}
}
const
char
*
AdadeltaOptimizer
::
SerializeState
(
int
*
state_len
)
{
OptimizerState
state
;
state
.
set_learning_rate
(
lr_policy_
->
LearningRate
(
num_sample_passed_
));
state
.
set_num_sample_passed
(
num_sample_passed_
);
TensorToProto
(
*
parameter_
,
state
.
mutable_parameter
());
TensorToProto
(
*
accum_gradient_
,
state
.
mutable_accum_gradient
());
TensorToProto
(
*
accum_delta_
,
state
.
mutable_accum_delta
());
TensorToProto
(
*
update_delta_
,
state
.
mutable_update_delta
());
state
.
set_nesterov
(
epsilon_
);
state
.
set_momentum
(
rho_
);
state
.
set_decay
(
decay_
);
*
state_len
+=
CalStateSize
(
parameter_
,
accum_gradient_
,
accum_delta_
,
update_delta_
,
rho_
,
epsilon_
,
decay_
);
return
state
.
SerializeAsString
().
c_str
();
}
void
AdadeltaOptimizer
::
DeSerializeState
(
const
std
::
string
&
str
)
{
OptimizerState
state
;
state
.
ParseFromString
(
str
);
lr_policy_
->
set
(
state
.
learning_rate
());
num_sample_passed_
=
state
.
num_sample_passed
();
ProtoToTensor
(
state
.
parameter
(),
parameter_
);
ProtoToTensor
(
state
.
accum_gradient
(),
accum_gradient_
);
ProtoToTensor
(
state
.
accum_delta
(),
accum_delta_
);
ProtoToTensor
(
state
.
update_delta
(),
update_delta_
);
}
// namespace optimizer
}
// namespace optimizer
}
// namespace paddle
paddle/optimizer/adadelta_optimizer.h
浏览文件 @
e4567962
...
...
@@ -7,21 +7,31 @@ namespace optimizer {
class
AdadeltaOptimizer
:
public
ParameterOptimizer
{
public:
AdadeltaOptimizer
(
double
rho
,
double
epsilon
,
double
decay
,
LrPolicy
*
lr
)
:
ParameterOptimizer
(
lr
),
AdadeltaOptimizer
(
Tensor
*
parameter
,
LrPolicy
*
lr
,
double
rho
,
double
epsilon
,
double
decay
)
:
ParameterOptimizer
(
parameter
,
lr
),
accum_gradient_
(
nullptr
),
accum_delta_
(
nullptr
),
update_delta_
(
nullptr
),
rho_
(
rho
),
epsilon_
(
epsilon
),
decay_
(
decay
)
{}
decay_
(
decay
)
{
size_t
size
=
p
->
size
();
if
(
accum_gradient_
)
delete
accum_gradient_
;
accum_gradient_
=
new
Tensor
(
size
);
if
(
accum_delta_
)
delete
accum_delta_
;
accum_delta_
=
new
Tensor
(
size
);
if
(
update_delta_
)
delete
update_delta_
;
update_delta_
=
new
Tensor
(
size
);
}
~
AdadeltaOptimizer
()
{
if
(
accum_gradient_
)
delete
accum_gradient_
;
if
(
accum_delta_
)
delete
accum_delta_
;
if
(
update_delta_
)
delete
update_delta_
;
}
void
Update
(
const
Tensor
*
gradient
);
void
set_weight
(
Tensor
*
p
);
const
char
*
SerializeState
(
int
*
state_len
);
void
DeSerializeState
(
const
std
::
string
&
state
);
private:
Tensor
*
accum_gradient_
;
...
...
paddle/optimizer/adagrad_optimizer.cc
浏览文件 @
e4567962
...
...
@@ -5,12 +5,6 @@
namespace
paddle
{
namespace
optimizer
{
void
AdagradOptimizer
::
set_weight
(
Tensor
*
p
)
{
parameter_
=
p
;
size_t
size
=
p
->
size
();
accum_gradient_
=
new
Tensor
(
size
);
}
void
AdagradOptimizer
::
Update
(
const
Tensor
*
gradient
)
{
num_sample_passed_
+=
1
;
double
learning_rate
=
lr_policy_
->
LearningRate
(
num_sample_passed_
);
...
...
@@ -23,6 +17,8 @@ void AdagradOptimizer::Update(const Tensor* gradient) {
learning_rate
*
decay_
*
param
[
i
];
}
}
const
char
*
SGDOptimizer
::
SerializeState
(
int
*
state_len
)
{
NIMPL
;
}
void
SGDOptimizer
::
DeSerializeState
(
const
std
::
string
&
str
)
{
NIMPL
;
}
// namespace optimizer
}
// namespace optimizer
}
// namespace paddle
paddle/optimizer/adagrad_optimizer.h
浏览文件 @
e4567962
...
...
@@ -7,16 +7,19 @@ namespace optimizer {
class
AdagradOptimizer
:
public
ParameterOptimizer
{
public:
AdagradOptimizer
(
double
epsilon
,
double
decay
,
LrPolicy
*
lr
)
:
ParameterOptimizer
(
lr
),
accum_gradient_
(
nullptr
),
epsilon_
(
epsilon
),
decay_
(
decay
)
{}
AdagradOptimizer
(
Tensor
*
parameter
,
LrPolicy
*
lr
,
double
epsilon
,
double
decay
)
:
ParameterOptimizer
(
parameter
,
lr
),
epsilon_
(
epsilon
),
decay_
(
decay
)
{
size_t
size
=
p
->
size
();
if
(
accum_gradient_
)
delete
accum_gradient_
;
accum_gradient_
=
new
Tensor
(
size
);
}
~
AdagradOptimizer
()
{
if
(
accum_gradient_
)
delete
accum_gradient_
;
}
void
Update
(
const
Tensor
*
gradient
);
void
set_weight
(
Tensor
*
p
);
private:
Tensor
*
accum_gradient_
;
...
...
paddle/optimizer/adam_optimizer.cc
浏览文件 @
e4567962
...
...
@@ -28,5 +28,33 @@ void AdamOptimizer::Update(const Tensor *gradient) {
learning_rate
*
(
m
[
i
]
/
std
::
sqrt
(
v
[
i
]
+
epsilon_
)
+
decay_
*
param
[
i
]);
}
}
const
char
*
AdadeltaOptimizer
::
SerializeState
(
int
*
state_len
)
{
OptimizerState
state
;
state
.
set_learning_rate
(
lr_policy_
->
LearningRate
(
num_sample_passed_
));
state
.
set_num_sample_passed
(
num_sample_passed_
);
TensorToProto
(
*
parameter_
,
state
.
mutable_parameter
());
TensorToProto
(
*
velocitys_
,
state
.
mutable_momentums
());
state
.
set_beta_1
(
beta_1_
);
state
.
set_beta_2
(
beta_2_
);
state
.
set_decay
(
decay_
);
*
state_len
+=
CalStateSize
(
parameter_
,
momentums_
,
velocitys_
,
beta_1_
,
beta_2
,
epsilon_
decay_
);
return
state
.
SerializeAsString
().
c_str
();
}
void
AdadeltaOptimizer
::
DeSerializeState
(
const
std
::
string
&
str
)
{
OptimizerState
state
;
state
.
ParseFromString
(
str
);
lr_policy_
->
set
(
state
.
learning_rate
());
num_sample_passed_
=
state
.
num_sample_passed
();
ProtoToTensor
(
state
.
parameter
(),
parameter_
);
ProtoToTensor
(
state
.
velocitys
(),
velocitys__
);
beta_1_
=
state
.
beta_1
();
beta_2_
=
state
.
beta_2
();
}
}
// namespace optimizer
}
// namespace paddle
paddle/optimizer/adam_optimizer.h
浏览文件 @
e4567962
...
...
@@ -7,9 +7,12 @@ namespace optimizer {
class
AdamOptimizer
:
public
ParameterOptimizer
{
public:
AdamOptimizer
(
double
beta_1
,
double
beta_2
,
double
epsilon
,
double
decay
,
LrPolicy
*
lr
)
:
ParameterOptimizer
(
lr
),
AdamOptimizer
(
Tensor
*
parameter
,
LrPolicy
*
lr
double
beta_1
,
double
beta_2
,
double
epsilon
,
double
decay
)
:
ParameterOptimizer
(
parameter
,
lr
),
momentums_
(
nullptr
),
velocitys_
(
nullptr
),
beta_1_
(
beta_1
),
...
...
paddle/optimizer/lr_policy.h
浏览文件 @
e4567962
...
...
@@ -10,6 +10,7 @@ class LrPolicy {
public:
virtual
~
LrPolicy
()
{}
virtual
double
LearningRate
(
const
uint64_t
num_sample_passed
)
=
0
;
virtual
void
set
(
double
current_learning_rate
)
=
0
;
};
// constant learning rate policy
...
...
@@ -19,6 +20,9 @@ public:
double
LearningRate
(
const
uint64_t
num_sample_passed
)
{
return
learning_rate
;
}
void
set
(
double
current_learning_rate
)
{
learning_rate
=
current_learning_rate
;
}
private:
double
learning_rate
;
...
...
@@ -31,6 +35,9 @@ public:
double
LearningRate
(
const
uint64_t
num_sample_passed
)
{
return
std
::
max
(
learning_rate
-
lr_decay_a
*
num_sample_passed
,
lr_decay_b
);
}
void
set
(
double
current_learning_rate
)
{
learning_rate
=
current_learning_rate
;
}
private:
double
learning_rate
;
...
...
paddle/optimizer/optimizer.cc
浏览文件 @
e4567962
...
...
@@ -44,13 +44,13 @@ paddle_optimizer* paddle_create_optimizer(const unsigned char* config_proto,
const
int
state_len
)
{
paddle_optimizer
*
optimizer
=
new
paddle_optimizer
;
std
::
string
config
(
config_proto
,
config_proto
+
config_proto_len
);
optimizer
->
impl
=
ParameterOptimizer
::
Create
(
config
);
Tensor
*
parameter
=
new
Tensor
(
reinterpret_cast
<
float
*>
(
param_buffer
),
num_bytes
);
optimizer
->
impl
=
ParameterOptimizer
::
Create
(
config
,
parameter
);
if
(
state
!=
nullptr
)
{
std
::
string
s
(
state
,
state
+
state_len
);
optimizer
->
impl
->
DeSerializeState
(
s
);
}
Tensor
*
param
=
new
Tensor
(
reinterpret_cast
<
float
*>
(
param_buffer
),
num_bytes
);
optimizer
->
impl
->
set_weight
(
param
);
return
optimizer
;
}
...
...
@@ -77,6 +77,7 @@ int paddle_optimizer_get_weights(paddle_optimizer* o, void** param_buffer) {
}
int
paddle_optimizer_get_state
(
paddle_optimizer
*
o
,
const
char
**
state
)
{
*
state
=
o
->
impl
->
SerializeState
();
return
strlen
(
*
state
);
int
state_len
=
0
;
*
state
=
o
->
impl
->
SerializeState
(
&
state_len
);
return
state_len
;
}
paddle/optimizer/parameter_optimizer.cc
浏览文件 @
e4567962
...
...
@@ -10,8 +10,8 @@
namespace
paddle
{
namespace
optimizer
{
ParameterOptimizer
*
ParameterOptimizer
::
Create
(
const
std
::
string
&
config_proto
)
{
ParameterOptimizer
*
ParameterOptimizer
::
Create
(
const
std
::
string
&
config_proto
,
Tensor
*
parameter
)
{
paddle
::
OptimizerConfig
config
;
CHECK
(
config
.
ParseFromString
(
config_proto
)
==
0
)
<<
"failed parse optimizer config"
;
...
...
@@ -29,34 +29,38 @@ ParameterOptimizer *ParameterOptimizer::Create(
};
LrPolicy
*
lr
=
select_lr_policy
(
config
);
auto
select_optimizer
=
[
=
](
const
OptimizerConfig
&
config
)
->
ParameterOptimizer
*
{
[
=
](
Tensor
*
parameter
,
const
OptimizerConfig
&
config
)
->
ParameterOptimizer
*
{
if
(
config
.
optimizer
()
==
OptimizerConfig
::
SGD
)
{
return
new
SGDOptimizer
(
config
.
sgd
().
momentum
(),
return
new
SGDOptimizer
(
parameter
,
lr
,
config
.
sgd
().
momentum
(),
config
.
sgd
().
decay
(),
config
.
sgd
().
nesterov
(),
lr
);
config
.
sgd
().
nesterov
());
}
if
(
config
.
optimizer
()
==
OptimizerConfig
::
Adadelta
)
{
return
new
AdadeltaOptimizer
(
config
.
adadelta
().
rho
(),
return
new
AdadeltaOptimizer
(
parameter
,
lr
,
config
.
adadelta
().
rho
(),
config
.
adadelta
().
epsilon
(),
config
.
adadelta
().
decay
(),
lr
);
config
.
adadelta
().
decay
());
}
if
(
config
.
optimizer
()
==
OptimizerConfig
::
Adagrad
)
{
return
new
AdagradOptimizer
(
config
.
adagrad
().
epsilon
(),
config
.
adagrad
().
decay
(),
lr
);
parameter
,
lr
,
config
.
adagrad
().
epsilon
(),
config
.
adagrad
().
decay
()
);
}
if
(
config
.
optimizer
()
==
OptimizerConfig
::
Adam
)
{
return
new
AdamOptimizer
(
config
.
adam
().
beta_1
(),
return
new
AdamOptimizer
(
parameter
,
lr
,
config
.
adam
().
beta_1
(),
config
.
adam
().
beta_2
(),
config
.
adam
().
epsilon
(),
config
.
adam
().
decay
(),
lr
);
config
.
adam
().
decay
());
}
// default
LOG
(
WARNING
)
<<
"have not select any Optimizer. use SGDOptimizer in default"
;
return
new
SGDOptimizer
(
0.0
,
0.0
,
false
,
lr
);
return
new
SGDOptimizer
(
parameter
,
lr
,
0.0
,
0.0
,
false
);
};
return
select_optimizer
(
config
);
}
...
...
@@ -66,7 +70,5 @@ float *ParameterOptimizer::get_weight(int *param_size) const {
return
parameter_
->
get_buffer
();
}
void
ParameterOptimizer
::
set_weight
(
Tensor
*
p
)
{
parameter_
=
p
;
}
}
// namespace optimizer
}
// namespace paddle
paddle/optimizer/parameter_optimizer.h
浏览文件 @
e4567962
...
...
@@ -5,32 +5,35 @@
#include <string>
#include "OptimizerConfig.pb.h"
#include "lr_policy.h"
#include "serialization.h"
#include "tensor.h"
// Not Implemen Yet, macr
// o
#define NIMPL crash(__PRETTY_FUNCTION__, " not implemented yet")
namespace
paddle
{
namespace
optimizer
{
const
std
::
string
kOptimizerVersion
=
"1.0"
;
class
ParameterOptimizer
{
public:
/**
* @brief update hook for algorithm need to traverse parameter more than
* once.
*/
ParameterOptimizer
(
LrPolicy
*
lr
)
:
lr_policy_
(
lr
),
num_sample_passed_
(
0
)
{}
ParameterOptimizer
(
Tensor
*
parameter
,
LrPolicy
*
lr
)
:
parameter_
(
parameter
),
lr_policy_
(
lr
),
num_sample_passed_
(
0
)
{}
virtual
~
ParameterOptimizer
()
{
delete
parameter_
;
};
static
ParameterOptimizer
*
Create
(
const
std
::
string
&
config_proto
);
virtual
const
char
*
SerializeState
();
virtual
void
DeSerializeState
(
const
std
::
string
&
state
);
static
ParameterOptimizer
*
Create
(
const
std
::
string
&
config_proto
,
Tensor
*
parameter
);
virtual
void
Update
(
const
Tensor
*
gradient
)
=
0
;
virtual
float
*
get_weight
(
int
*
param_size
)
const
;
virtual
void
set_weight
(
Tensor
*
parameter
);
virtual
const
char
*
SerializeState
(
int
*
state_len
)
=
0
;
virtual
void
DeSerializeState
(
const
std
::
string
&
state
)
=
0
;
protected:
Tensor
*
parameter_
;
// learning rate policy
LrPolicy
*
lr_policy_
;
uint64_t
num_sample_passed_
;
...
...
paddle/optimizer/serialization.h
浏览文件 @
e4567962
...
...
@@ -2,6 +2,7 @@
#include <sstream>
#include <string>
#include <type_traits>
#include "OptimizerConfig.pb.h"
#include "paddle/utils/Logging.h"
#include "tensor.h"
...
...
@@ -9,6 +10,17 @@
namespace
paddle
{
namespace
optimizer
{
inline
unsigned
CalStateSize
(
int
*
state_len
)
{
return
0
;
}
template
<
typename
HEAD
,
typename
...
TAIL
>
unsigned
CalStateSize
(
const
HEAD
&
head
,
const
TAIL
&
...
tail
)
{
if
(
std
::
is_fundamental
<
HEAD
>::
value
)
{
return
sizeof
head
+
CalStateSize
(
tail
...);
}
else
{
return
sizeof
(
head
[
0
]
*
head
->
size
())
+
CalStateSize
(
tail
...);
}
}
static
void
TensorToProto
(
const
Tensor
&
tensor
,
TensorProto
*
proto
)
{
proto
->
set_data_type
(
TensorProto
::
PADDLE_ELEMENT_TYPE_FLOAT32
);
proto
->
set_size
(
tensor
.
size
());
...
...
paddle/optimizer/sgd_optimizer.h
浏览文件 @
e4567962
...
...
@@ -7,20 +7,26 @@ namespace optimizer {
class
SGDOptimizer
:
public
ParameterOptimizer
{
public:
SGDOptimizer
(
double
m
,
double
d
,
bool
n
,
LrPolicy
*
lr
)
:
ParameterOptimizer
(
lr
),
SGDOptimizer
(
Tensor
*
parameter
,
LrPolicy
*
lr
,
double
m
,
double
d
,
bool
n
)
:
ParameterOptimizer
(
parameter
,
lr
),
momentums_
(
nullptr
),
momentum_
(
m
),
decay_
(
d
),
nesterov_
(
n
)
{}
virtual
~
SGDOptimizer
()
{
delete
momentums_
;
}
nesterov_
(
n
)
{
if
(
momentum_
!=
0.0
)
{
size_t
size
=
p
->
size
();
// TODO: fix it with align aware allocator bind to Tensor
if
(
momentums_
)
delete
momentums_
;
momentums_
=
new
Tensor
(
size
);
}
}
virtual
~
SGDOptimizer
()
{
if
(
momentums_
)
delete
momentums_
;
}
void
Update
(
const
Tensor
*
gradient
);
const
char
*
SerializeState
();
const
char
*
SerializeState
(
int
*
state_len
);
void
DeSerializeState
(
const
std
::
string
&
state
);
void
set_weight
(
Tensor
*
p
);
float
*
get_weight
(
int
*
param_size
)
const
;
private:
Tensor
*
momentums_
;
double
momentum_
;
...
...
paddle/optimizer/sgd_optmizer.cc
浏览文件 @
e4567962
...
...
@@ -4,15 +4,6 @@
namespace
paddle
{
namespace
optimizer
{
void
SGDOptimizer
::
set_weight
(
Tensor
*
p
)
{
parameter_
=
p
;
if
(
momentum_
!=
0.0
)
{
size_t
size
=
p
->
size
();
// TODO: fix it with align aware allocator bind to Tensor
momentums_
=
new
Tensor
(
size
);
}
}
void
SGDOptimizer
::
Update
(
const
Tensor
*
gradient
)
{
num_sample_passed_
+=
1
;
double
learning_rate
=
lr_policy_
->
LearningRate
(
num_sample_passed_
);
...
...
@@ -36,28 +27,30 @@ void SGDOptimizer::Update(const Tensor *gradient) {
}
}
const
char
*
SGDOptimizer
::
SerializeState
()
{
const
char
*
SGDOptimizer
::
SerializeState
(
int
*
state_len
)
{
OptimizerState
state
;
// version is a global const value
state
.
set_version
(
kOptimizerVersion
);
TensorToProto
(
*
parameter_
,
state
.
add_data
());
TensorToProto
(
*
momentums_
,
state
.
add_data
());
state
.
add_hyperparam
(
momentum_
);
state
.
set_learning_rate
(
lr_policy_
->
LearningRate
(
num_sample_passed_
));
state
.
set_num_sample_passed
(
num_sample_passed_
);
TensorToProto
(
*
parameter_
,
state
.
mutable_parameter
());
TensorToProto
(
*
momentums_
,
state
.
mutable_momentums
());
state
.
set_momentum
(
momentum_
);
state
.
set_decay
(
decay_
);
state
.
set_nesterov
(
nesterov_
);
*
state_len
+=
CalStateSize
(
parameter_
,
momentums_
,
momentum_
,
decay_
,
nesterov_
);
return
state
.
SerializeAsString
().
c_str
();
}
void
SGDOptimizer
::
DeSerializeState
(
const
std
::
string
&
str
)
{
OptimizerState
state
;
state
.
ParseFromString
(
str
);
CHECK
(
state
.
version
()
==
kOptimizerVersion
)
<<
"error version of state"
<<
"expected : "
<<
kOptimizerVersion
<<
"get : "
<<
state
.
version
();
lr_policy_
->
set
(
state
.
learning_rate
());
num_sample_passed_
=
state
.
num_sample_passed
();
ProtoToTensor
(
state
.
data
(
0
),
parameter_
);
if
(
state
.
data_size
()
==
2
)
{
ProtoToTensor
(
state
.
data
(
1
),
momentums_
);
momentum_
=
state
.
hyperparam
(
0
);
}
ProtoToTensor
(
state
.
parameter
(),
parameter_
);
ProtoToTensor
(
state
.
parameter
(),
momentums_
);
momentum_
=
state
.
momentum
();
}
}
// namespace optimizer
...
...
proto/OptimizerConfig.proto
浏览文件 @
e4567962
...
...
@@ -5,13 +5,14 @@ option optimize_for = LITE_RUNTIME;
package
paddle
;
message
SGDConfig
{
// SGD
// SGD
// momentum: float >= 0. Parameter updates momentum.
// decay: float >= 0. Learning rate decay over each update.
// nesterov: boolean. Whether to apply Nesterov momentum.
optional
double
momentum
=
21
[
default
=
0.0
];
optional
double
decay
=
23
[
default
=
0.0
];
optional
bool
nesterov
=
24
[
default
=
false
];
}
...
...
@@ -75,14 +76,38 @@ enum DataType {
}
required
DataType
data_type
=
1
;
repeated
bytes
content
=
2
;
optional
uint64
size
=
3
;
}
message
OptimizerState
{
// match old training state with format parser
required
string
version
=
100
;
repeated
TensorProto
data
=
1
;
repeated
double
hyperparam
=
3
;
optional
double
learning_rate
=
101
;
optional
double
lr_decay_a
=
102
;
optional
double
lr_decay_b
=
103
;
optional
double
num_sample_passed
=
104
;
// momentum
optional
TensorProto
parameter
=
105
;
optional
TensorProto
momentums
=
1
;
// adadelta
optional
TensorProto
accum_gradient
=
2
;
optional
TensorProto
accum_delta
=
3
;
optional
TensorProto
update_delta
=
4
;
// adam
optional
TensorProto
velocitys
=
5
;
// momentum
optional
double
momentum
=
6
;
optional
double
decay
=
7
;
optional
bool
nesterov
=
8
;
// adadelta
optional
double
rho
=
9
;
optional
double
epsilon
=
10
;
// adam
optional
double
beta_1
=
11
;
optional
double
beta_2
=
12
;
}
message
OptimizerConfig
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录