Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b72e8aa3
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b72e8aa3
编写于
6月 14, 2017
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"seperate serialization proto state"
上级
b7e68e06
变更
18
隐藏空白更改
内联
并排
Showing
18 changed file
with
176 addition
and
134 deletion
+176
-134
paddle/optimizer/CMakeLists.txt
paddle/optimizer/CMakeLists.txt
+2
-1
paddle/optimizer/Tensor.h
paddle/optimizer/Tensor.h
+0
-6
paddle/optimizer/adadelta_optimizer.cc
paddle/optimizer/adadelta_optimizer.cc
+8
-15
paddle/optimizer/adadelta_optimizer.h
paddle/optimizer/adadelta_optimizer.h
+2
-2
paddle/optimizer/adagrad_optimizer.cc
paddle/optimizer/adagrad_optimizer.cc
+20
-3
paddle/optimizer/adagrad_optimizer.h
paddle/optimizer/adagrad_optimizer.h
+2
-2
paddle/optimizer/adam_optimizer.cc
paddle/optimizer/adam_optimizer.cc
+6
-12
paddle/optimizer/adam_optimizer.h
paddle/optimizer/adam_optimizer.h
+5
-2
paddle/optimizer/optimizer.cc
paddle/optimizer/optimizer.cc
+1
-1
paddle/optimizer/optimizer.h
paddle/optimizer/optimizer.h
+2
-2
paddle/optimizer/parameter_optimizer.cc
paddle/optimizer/parameter_optimizer.cc
+1
-1
paddle/optimizer/parameter_optimizer.h
paddle/optimizer/parameter_optimizer.h
+1
-5
paddle/optimizer/parameter_optimizer_test.cpp
paddle/optimizer/parameter_optimizer_test.cpp
+53
-43
paddle/optimizer/serialization.h
paddle/optimizer/serialization.h
+7
-7
paddle/optimizer/serialization_test.cpp
paddle/optimizer/serialization_test.cpp
+24
-0
paddle/optimizer/sgd_optimizer.cc
paddle/optimizer/sgd_optimizer.cc
+5
-10
paddle/optimizer/sgd_optimizer.h
paddle/optimizer/sgd_optimizer.h
+2
-2
proto/OptimizerConfig.proto
proto/OptimizerConfig.proto
+35
-20
未找到文件。
paddle/optimizer/CMakeLists.txt
浏览文件 @
b72e8aa3
...
...
@@ -6,12 +6,13 @@ set(OPITMIZER_SRCS
adam_optimizer.cc
optimizer.cc
parameter_optimizer.cc
sgd_optmizer.cc
sgd_opt
i
mizer.cc
)
add_library
(
optimizer STATIC
${
OPITMIZER_SRCS
}
)
add_dependencies
(
optimizer gen_proto_cpp
)
add_simple_unittest
(
tensor_test
)
add_simple_unittest
(
serialization_test
)
add_simple_unittest
(
parameter_optimizer_test
)
add_dependencies
(
parameter_optimizer_test optimizer
)
paddle/optimizer/Tensor.h
浏览文件 @
b72e8aa3
...
...
@@ -17,16 +17,10 @@ public:
TensorT
(
size_t
size
)
:
height_
(
1
),
width_
(
size
)
{
data_
=
new
T
[
size
];
}
TensorT
(
T
*
data
,
size_t
size
)
:
height_
(
1
),
width_
(
size
),
data_
(
data
)
{}
TensorT
(
T
*
data
,
size_t
h
,
size_t
w
)
:
height_
(
h
),
width_
(
w
),
data_
(
data_
)
{}
TensorT
(
const
TensorT
&
t
)
:
TensorT
(
1
,
t
.
size
(),
0
,
t
.
get_buffer
(),
false
,
false
)
{}
~
TensorT
()
{
if
(
data_
)
delete
data_
;
}
TensorT
&
operator
=
(
const
TensorT
&
t
)
{
this
->
width_
=
t
.
size
();
this
->
data_
=
t
.
get_buffer
();
}
T
*
get_buffer
()
{
return
this
->
data_
;
}
T
&
operator
[](
const
size_t
idx
)
{
CHECK
(
idx
>=
0
&&
idx
<
this
->
width_
)
<<
"out of index range"
;
...
...
paddle/optimizer/adadelta_optimizer.cc
浏览文件 @
b72e8aa3
...
...
@@ -26,7 +26,7 @@ void AdadeltaOptimizer::Update(const Tensor* gradient) {
}
const
char
*
AdadeltaOptimizer
::
SerializeState
(
int
*
state_len
)
{
OptimizerState
state
;
Adadelta
OptimizerState
state
;
state
.
set_learning_rate
(
lr_policy_
->
LearningRate
(
num_sample_passed_
));
state
.
set_num_sample_passed
(
num_sample_passed_
);
...
...
@@ -34,22 +34,14 @@ const char* AdadeltaOptimizer::SerializeState(int* state_len) {
TensorToProto
(
*
accum_gradient_
,
state
.
mutable_accum_gradient
());
TensorToProto
(
*
accum_delta_
,
state
.
mutable_accum_delta
());
TensorToProto
(
*
update_delta_
,
state
.
mutable_update_delta
());
state
.
set_nesterov
(
epsilon_
);
state
.
set_momentum
(
rho_
);
state
.
set_decay
(
decay_
);
// can be used when memory alignment to system
*
state_len
+=
CalStateSize
(
parameter_
,
accum_gradient_
,
accum_delta_
,
update_delta_
,
rho_
,
epsilon_
,
decay_
);
*
state_len
=
CalStateSize
(
parameter_
,
accum_gradient_
,
accum_delta_
,
update_delta_
);
return
state
.
SerializeAsString
().
c_str
();
}
void
AdadeltaOptimizer
::
De
S
erializeState
(
const
std
::
string
&
str
)
{
OptimizerState
state
;
void
AdadeltaOptimizer
::
De
s
erializeState
(
const
std
::
string
&
str
)
{
Adadelta
OptimizerState
state
;
state
.
ParseFromString
(
str
);
lr_policy_
->
set
(
state
.
learning_rate
());
num_sample_passed_
=
state
.
num_sample_passed
();
...
...
@@ -58,6 +50,7 @@ void AdadeltaOptimizer::DeSerializeState(const std::string& str) {
ProtoToTensor
(
state
.
accum_gradient
(),
accum_gradient_
);
ProtoToTensor
(
state
.
accum_delta
(),
accum_delta_
);
ProtoToTensor
(
state
.
update_delta
(),
update_delta_
);
}
}
// namespace optimizer
}
// namespace
optimizer
}
// namespace
paddle
paddle/optimizer/adadelta_optimizer.h
浏览文件 @
b72e8aa3
...
...
@@ -13,7 +13,7 @@ public:
rho_
(
rho
),
epsilon_
(
epsilon
),
decay_
(
decay
)
{
size_t
size
=
p
->
size
();
size_t
size
=
p
arameter
->
size
();
if
(
accum_gradient_
)
delete
accum_gradient_
;
accum_gradient_
=
new
Tensor
(
size
);
if
(
accum_delta_
)
delete
accum_delta_
;
...
...
@@ -28,7 +28,7 @@ public:
}
void
Update
(
const
Tensor
*
gradient
);
const
char
*
SerializeState
(
int
*
state_len
);
void
De
S
erializeState
(
const
std
::
string
&
state
);
void
De
s
erializeState
(
const
std
::
string
&
state
);
private:
Tensor
*
accum_gradient_
;
...
...
paddle/optimizer/adagrad_optimizer.cc
浏览文件 @
b72e8aa3
...
...
@@ -17,8 +17,25 @@ void AdagradOptimizer::Update(const Tensor* gradient) {
learning_rate
*
decay_
*
param
[
i
];
}
}
const
char
*
SGDOptimizer
::
SerializeState
(
int
*
state_len
)
{
NIMPL
;
}
const
char
*
AdagradOptimizer
::
SerializeState
(
int
*
state_len
)
{
AdagradOptimizerState
state
;
state
.
set_learning_rate
(
lr_policy_
->
LearningRate
(
num_sample_passed_
));
state
.
set_num_sample_passed
(
num_sample_passed_
);
TensorToProto
(
*
parameter_
,
state
.
mutable_parameter
());
TensorToProto
(
*
accum_gradient_
,
state
.
mutable_accum_gradient
());
*
state_len
=
CalStateSize
(
parameter_
,
accum_gradient_
);
return
state
.
SerializeAsString
().
c_str
();
}
void
AdagradOptimizer
::
DeserializeState
(
const
std
::
string
&
str
)
{
AdagradOptimizerState
state
;
state
.
ParseFromString
(
str
);
lr_policy_
->
set
(
state
.
learning_rate
());
num_sample_passed_
=
state
.
num_sample_passed
();
ProtoToTensor
(
state
.
parameter
(),
parameter_
);
ProtoToTensor
(
state
.
accum_gradient
(),
accum_gradient_
);
}
void
SGDOptimizer
::
DeSerializeState
(
const
std
::
string
&
str
)
{
NIMPL
;
}
// namespace optimizer
}
// namespace optimizer
}
// namespace paddle
paddle/optimizer/adagrad_optimizer.h
浏览文件 @
b72e8aa3
...
...
@@ -12,7 +12,7 @@ public:
double
epsilon
,
double
decay
)
:
ParameterOptimizer
(
parameter
,
lr
),
epsilon_
(
epsilon
),
decay_
(
decay
)
{
size_t
size
=
p
->
size
();
size_t
size
=
p
arameter
->
size
();
if
(
accum_gradient_
)
delete
accum_gradient_
;
accum_gradient_
=
new
Tensor
(
size
);
}
...
...
@@ -21,7 +21,7 @@ public:
}
void
Update
(
const
Tensor
*
gradient
);
const
char
*
SerializeState
(
int
*
state_len
);
void
De
S
erializeState
(
const
std
::
string
&
state
);
void
De
s
erializeState
(
const
std
::
string
&
state
);
private:
Tensor
*
accum_gradient_
;
...
...
paddle/optimizer/adam_optimizer.cc
浏览文件 @
b72e8aa3
...
...
@@ -22,32 +22,26 @@ void AdamOptimizer::Update(const Tensor *gradient) {
}
}
const
char
*
Ada
delta
Optimizer
::
SerializeState
(
int
*
state_len
)
{
OptimizerState
state
;
const
char
*
Ada
m
Optimizer
::
SerializeState
(
int
*
state_len
)
{
Adam
OptimizerState
state
;
state
.
set_learning_rate
(
lr_policy_
->
LearningRate
(
num_sample_passed_
));
state
.
set_num_sample_passed
(
num_sample_passed_
);
TensorToProto
(
*
parameter_
,
state
.
mutable_parameter
());
TensorToProto
(
*
velocitys_
,
state
.
mutable_momentums
());
state
.
set_beta_1
(
beta_1_
);
state
.
set_beta_2
(
beta_2_
);
state
.
set_decay
(
decay_
);
*
state_len
+=
CalStateSize
(
parameter_
,
momentums_
,
velocitys_
,
beta_1_
,
beta_2
,
epsilon_
decay_
);
*
state_len
=
CalStateSize
(
parameter_
,
momentums_
,
velocitys_
);
return
state
.
SerializeAsString
().
c_str
();
}
void
Ada
deltaOptimizer
::
DeS
erializeState
(
const
std
::
string
&
str
)
{
OptimizerState
state
;
void
Ada
mOptimizer
::
Des
erializeState
(
const
std
::
string
&
str
)
{
Adam
OptimizerState
state
;
state
.
ParseFromString
(
str
);
lr_policy_
->
set
(
state
.
learning_rate
());
num_sample_passed_
=
state
.
num_sample_passed
();
ProtoToTensor
(
state
.
parameter
(),
parameter_
);
ProtoToTensor
(
state
.
velocitys
(),
velocitys__
);
beta_1_
=
state
.
beta_1
();
beta_2_
=
state
.
beta_2
();
ProtoToTensor
(
state
.
velocitys
(),
velocitys_
);
}
}
// namespace optimizer
}
// namespace paddle
paddle/optimizer/adam_optimizer.h
浏览文件 @
b72e8aa3
...
...
@@ -8,7 +8,8 @@ namespace optimizer {
class
AdamOptimizer
:
public
ParameterOptimizer
{
public:
AdamOptimizer
(
Tensor
*
parameter
,
LrPolicy
*
lr
double
beta_1
,
LrPolicy
*
lr
,
double
beta_1
,
double
beta_2
,
double
epsilon
,
double
decay
)
...
...
@@ -17,7 +18,7 @@ public:
beta_2_
(
beta_2
),
epsilon_
(
epsilon
),
decay_
(
decay
)
{
size_t
size
=
p
->
size
();
size_t
size
=
p
arameter
->
size
();
momentums_
=
new
Tensor
(
size
);
velocitys_
=
new
Tensor
(
size
);
}
...
...
@@ -26,6 +27,8 @@ public:
if
(
velocitys_
)
delete
velocitys_
;
}
void
Update
(
const
Tensor
*
gradient
);
const
char
*
SerializeState
(
int
*
state_len
);
void
DeserializeState
(
const
std
::
string
&
state
);
private:
Tensor
*
momentums_
;
...
...
paddle/optimizer/optimizer.cc
浏览文件 @
b72e8aa3
...
...
@@ -49,7 +49,7 @@ paddle_optimizer* paddle_create_optimizer(const unsigned char* config_proto,
optimizer
->
impl
=
ParameterOptimizer
::
Create
(
config
,
parameter
);
if
(
state
!=
nullptr
)
{
std
::
string
s
(
state
,
state
+
state_len
);
optimizer
->
impl
->
De
S
erializeState
(
s
);
optimizer
->
impl
->
De
s
erializeState
(
s
);
}
return
optimizer
;
}
...
...
paddle/optimizer/optimizer.h
浏览文件 @
b72e8aa3
...
...
@@ -75,14 +75,14 @@ int paddle_update_parameter(paddle_optimizer* o,
int
num_bytes
);
/**
* @brief optimizer
instance
* @brief optimizer
for get parameter buffer
* @param param_buffer, initilized parameter buffer
* @return return content length
*/
int
paddle_optimizer_get_weights
(
paddle_optimizer
*
o
,
void
**
param_buffer
);
/**
* @brief optimzizer
instanc
e
* @brief optimzizer
for saving training stat
e
* @param training state for receive SerializeState
* @return return state_buffer length
*/
...
...
paddle/optimizer/parameter_optimizer.cc
浏览文件 @
b72e8aa3
...
...
@@ -62,7 +62,7 @@ ParameterOptimizer *ParameterOptimizer::Create(const std::string &config_proto,
<<
"have not select any Optimizer. use SGDOptimizer in default"
;
return
new
SGDOptimizer
(
parameter
,
lr
,
0.0
,
0.0
,
false
);
};
return
select_optimizer
(
config
);
return
select_optimizer
(
parameter
,
config
);
}
float
*
ParameterOptimizer
::
get_weight
(
int
*
param_size
)
const
{
...
...
paddle/optimizer/parameter_optimizer.h
浏览文件 @
b72e8aa3
...
...
@@ -8,10 +8,6 @@
#include "serialization.h"
#include "tensor.h"
// Not Implemen Yet, macr
// o
#define NIMPL crash(__PRETTY_FUNCTION__, " not implemented yet")
namespace
paddle
{
namespace
optimizer
{
...
...
@@ -30,7 +26,7 @@ public:
virtual
void
Update
(
const
Tensor
*
gradient
)
=
0
;
virtual
float
*
get_weight
(
int
*
param_size
)
const
;
virtual
const
char
*
SerializeState
(
int
*
state_len
)
=
0
;
virtual
void
De
S
erializeState
(
const
std
::
string
&
state
)
=
0
;
virtual
void
De
s
erializeState
(
const
std
::
string
&
state
)
=
0
;
protected:
Tensor
*
parameter_
;
...
...
paddle/optimizer/parameter_optimizer_test.cpp
浏览文件 @
b72e8aa3
#include "parameter_optimizer.h"
#include <cmath>
#include <
tuple
>
#include <
map
>
#include <vector>
#include "adadelta_optimizer.h"
#include "adagrad_optimizer.h"
#include "adam_optimizer.h"
#include "gtest/gtest.h"
#include "sgd_optimizer.h"
using
namespace
paddle
;
using
namespace
paddle
::
optimizer
;
Tensor
*
FillTensor
(
size_t
size
)
{
Tensor
*
param
=
new
Tensor
(
size
);
Tensor
&
p
=
*
param
;
for
(
auto
i
=
0
;
i
<
p
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
p
.
size
();
++
i
)
{
p
[
i
]
=
(
float
)
rand
()
/
(
float
)
RAND_MAX
;
}
return
param
;
...
...
@@ -22,7 +23,7 @@ Tensor* FillTensor(size_t size) {
Tensor
*
FixedTensor
(
size_t
size
)
{
Tensor
*
param
=
new
Tensor
(
size
);
Tensor
&
p
=
*
param
;
for
(
auto
i
=
0
;
i
<
p
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
p
.
size
();
++
i
)
{
p
[
i
]
=
i
;
}
return
param
;
...
...
@@ -31,7 +32,7 @@ Tensor* FixedTensor(size_t size) {
class
OptimizerTest
:
public
testing
::
Test
{
public:
// init tensor shape
const
size_t
s
ize
=
5
;
const
size_t
kS
ize
=
5
;
virtual
void
SetUp
()
{
CreateSGD
();
...
...
@@ -40,68 +41,77 @@ public:
virtual
void
TearDown
()
{}
void
CreateSGD
()
{
config
.
set_optimizer
(
OptimizerConfig
::
SGD
);
config
.
mutable_sgd
()
->
set_momentum
(
0.0
);
config
.
mutable_sgd
()
->
set_decay
(
0.0
);
config
.
mutable_sgd
()
->
set_nesterov
(
false
);
config
.
set_lr_policy
(
OptimizerConfig
::
ConstLr
);
config
.
mutable_const_lr
()
->
set_learning_rate
(
0.1
);
Tensor
*
parameter
=
FillTensor
(
kSize
);
config_
.
set_optimizer
(
OptimizerConfig
::
SGD
);
config_
.
mutable_sgd
()
->
set_momentum
(
0.0
);
config_
.
mutable_sgd
()
->
set_decay
(
0.0
);
config_
.
mutable_sgd
()
->
set_nesterov
(
false
);
config_
.
set_lr_policy
(
OptimizerConfig
::
ConstLr
);
config_
.
mutable_const_lr
()
->
set_learning_rate
(
0.1
);
ParameterOptimizer
*
opt
=
ParameterOptimizer
::
Create
(
config
.
SerializeAsString
());
opts
.
push_back
(
opt
);
ParameterOptimizer
::
Create
(
config_
.
SerializeAsString
(),
parameter
);
opts_
.
push_back
(
opt
);
opts_table_
[
opts_
.
size
()]
=
OptimizerConfig
::
SGD
;
}
void
CreateAdam
()
{
config
.
set_optimizer
(
OptimizerConfig
::
Adam
);
config
.
mutable_adam
()
->
set_beta_1
(
0.9
);
config
.
mutable_adam
()
->
set_beta_2
(
0.1
);
config
.
mutable_adam
()
->
set_epsilon
(
1e-3
);
config
.
mutable_adam
()
->
set_decay
(
0.0
);
config
.
set_lr_policy
(
OptimizerConfig
::
ConstLr
);
config
.
mutable_const_lr
()
->
set_learning_rate
(
0.1
);
Tensor
*
parameter
=
FixedTensor
(
kSize
);
config_
.
set_optimizer
(
OptimizerConfig
::
Adam
);
config_
.
mutable_adam
()
->
set_beta_1
(
0.9
);
config_
.
mutable_adam
()
->
set_beta_2
(
0.1
);
config_
.
mutable_adam
()
->
set_epsilon
(
1e-3
);
config_
.
mutable_adam
()
->
set_decay
(
0.0
);
config_
.
set_lr_policy
(
OptimizerConfig
::
ConstLr
);
config_
.
mutable_const_lr
()
->
set_learning_rate
(
0.1
);
ParameterOptimizer
*
opt
=
ParameterOptimizer
::
Create
(
config
.
SerializeAsString
());
opts
.
push_back
(
opt
);
}
void
TestSetWeight
()
{
Tensor
*
p
=
FillTensor
(
size
);
for
(
size_t
i
=
0
;
i
<
opts
.
size
();
++
i
)
{
opts
[
i
]
->
set_weight
(
p
);
}
ParameterOptimizer
::
Create
(
config_
.
SerializeAsString
(),
parameter
);
opts_
.
push_back
(
opt
);
opts_table_
[
opts_
.
size
()]
=
OptimizerConfig
::
Adam
;
}
void
TestGetWeight
()
{
Tensor
*
p
=
FixedTensor
(
size
);
for
(
size_t
i
=
0
;
i
<
opts
.
size
();
++
i
)
{
opts
[
i
]
->
set_weight
(
p
);
}
for
(
size_t
i
=
0
;
i
<
opts
.
size
();
++
i
)
{
Tensor
*
p
=
FixedTensor
(
kSize
);
for
(
size_t
i
=
0
;
i
<
opts_
.
size
();
++
i
)
{
int
s
=
0
;
float
*
newp
=
(
float
*
)
opts
[
i
]
->
get_weight
(
&
s
);
for
(
size_t
j
=
0
;
j
<
s
ize
;
++
j
)
{
float
*
newp
=
(
float
*
)
opts
_
[
i
]
->
get_weight
(
&
s
);
for
(
size_t
j
=
0
;
j
<
kS
ize
;
++
j
)
{
EXPECT_EQ
(
newp
[
j
],
(
*
p
)[
j
]);
}
}
}
void
TestUpdate
()
{
Tensor
*
g
=
FixedTensor
(
size
);
for
(
size_t
i
=
0
;
i
<
opts
.
size
();
++
i
)
{
opts
[
i
]
->
Update
(
g
);
Tensor
*
g
=
FixedTensor
(
kSize
);
for
(
size_t
i
=
0
;
i
<
opts_
.
size
();
++
i
)
{
opts_
[
i
]
->
Update
(
g
);
}
}
void
TestCheckPoint
()
{
std
::
map
<
OptimizerConfig
::
Optimizer
,
int
>
expected_state_len
=
{
{
OptimizerConfig
::
SGD
,
kSize
},
{
OptimizerConfig
::
Adam
,
kSize
*
3
},
};
for
(
size_t
i
=
0
;
i
<
opts_
.
size
();
++
i
)
{
int
state_len
=
0
;
std
::
string
state
=
opts_
[
i
]
->
SerializeState
(
&
state_len
);
EXPECT_EQ
(
state_len
,
expected_state_len
[
opts_table_
[
i
]]);
opts_
[
i
]
->
DeserializeState
(
state
);
}
}
private:
std
::
vector
<
ParameterOptimizer
*>
opts
;
OptimizerConfig
config
;
std
::
vector
<
ParameterOptimizer
*>
opts_
;
std
::
map
<
int
,
OptimizerConfig
::
Optimizer
>
opts_table_
;
OptimizerConfig
config_
;
};
TEST_F
(
OptimizerTest
,
test_set_get_weight
)
{
TestSetWeight
();
TestGetWeight
();
}
TEST_F
(
OptimizerTest
,
TestGetWeight
)
{
TestGetWeight
();
}
TEST_F
(
OptimizerTest
,
TestUpdate
)
{
TestUpdate
();
}
TEST_F
(
OptimizerTest
,
TestCheckPoint
)
{
TestCheckPoint
();
}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
return
RUN_ALL_TESTS
();
...
...
paddle/optimizer/serialization.h
浏览文件 @
b72e8aa3
...
...
@@ -10,15 +10,16 @@
namespace
paddle
{
namespace
optimizer
{
static
unsigned
CalStateSize
(
int
*
state_len
)
{
return
0
;
}
static
unsigned
CalStateSize
()
{
return
0
;
}
template
<
typename
HEAD
,
typename
...
TAIL
>
unsigned
CalStateSize
(
const
HEAD
&
head
,
const
TAIL
&
...
tail
)
{
if
(
std
::
is_fundamental
<
HEAD
>::
value
)
{
return
sizeof
head
+
CalStateSize
(
tail
...);
}
else
{
return
sizeof
(
head
[
0
])
*
head
->
size
()
+
CalStateSize
(
tail
...);
}
return
sizeof
head
+
CalStateSize
(
tail
...);
}
template
<
typename
...
TAIL
>
unsigned
CalStateSize
(
const
Tensor
*
head
,
const
TAIL
&
...
tail
)
{
return
head
->
size
()
+
CalStateSize
(
tail
...);
}
static
void
TensorToProto
(
const
Tensor
&
tensor
,
TensorProto
*
proto
)
{
...
...
@@ -32,7 +33,6 @@ static void TensorToProto(const Tensor& tensor, TensorProto* proto) {
}
static
void
ProtoToTensor
(
const
TensorProto
&
proto
,
Tensor
*
tensor
)
{
CHECK
(
proto
.
size
()
==
tensor
->
size
())
<<
"unmatch shape of proto and tensor"
;
std
::
stringstream
sin
;
for
(
auto
i
=
0
;
i
<
proto
.
content_size
();
++
i
)
{
sin
<<
proto
.
content
(
i
);
...
...
paddle/optimizer/
Tensor
_test.cpp
→
paddle/optimizer/
serialization
_test.cpp
浏览文件 @
b72e8aa3
#include "serialization.h"
#include "gtest/gtest.h"
#include "tensor.h"
using
namespace
paddle
;
using
namespace
paddle
::
optimizer
;
TEST
(
Tensor
,
indexer
)
{
Tensor
t
(
3
);
for
(
auto
i
=
0
;
i
<
t
.
size
();
++
i
)
{
TEST
(
Tensor
ToProto
,
Case1
)
{
Tensor
t
(
3
)
,
t1
(
3
)
;
for
(
size_t
i
=
0
;
i
<
t
.
size
();
++
i
)
{
t
[
i
]
=
i
;
t1
[
i
]
=
0
;
}
TensorProto
proto
;
TensorToProto
(
t
,
&
proto
);
ProtoToTensor
(
proto
,
&
t1
);
for
(
size_t
i
=
0
;
i
<
t1
.
size
();
++
i
)
{
EXPECT_EQ
(
t1
[
i
],
t
[
i
]);
}
ASSERT_EQ
(
t
[
2
],
2
);
ASSERT_EQ
(
t
[
1
],
1
);
}
int
main
(
int
argc
,
char
**
argv
)
{
...
...
paddle/optimizer/sgd_optmizer.cc
→
paddle/optimizer/sgd_opt
i
mizer.cc
浏览文件 @
b72e8aa3
#include "serialization.h"
#include "sgd_optimizer.h"
#include "serialization.h"
namespace
paddle
{
namespace
optimizer
{
...
...
@@ -28,29 +28,24 @@ void SGDOptimizer::Update(const Tensor *gradient) {
}
const
char
*
SGDOptimizer
::
SerializeState
(
int
*
state_len
)
{
OptimizerState
state
;
SGD
OptimizerState
state
;
state
.
set_learning_rate
(
lr_policy_
->
LearningRate
(
num_sample_passed_
));
state
.
set_num_sample_passed
(
num_sample_passed_
);
TensorToProto
(
*
parameter_
,
state
.
mutable_parameter
());
TensorToProto
(
*
momentums_
,
state
.
mutable_momentums
());
state
.
set_momentum
(
momentum_
);
state
.
set_decay
(
decay_
);
state
.
set_nesterov
(
nesterov_
);
*
state_len
+=
CalStateSize
(
parameter_
,
momentums_
,
momentum_
,
decay_
,
nesterov_
);
*
state_len
=
CalStateSize
(
parameter_
,
momentums_
);
return
state
.
SerializeAsString
().
c_str
();
}
void
SGDOptimizer
::
De
S
erializeState
(
const
std
::
string
&
str
)
{
OptimizerState
state
;
void
SGDOptimizer
::
De
s
erializeState
(
const
std
::
string
&
str
)
{
SGD
OptimizerState
state
;
state
.
ParseFromString
(
str
);
lr_policy_
->
set
(
state
.
learning_rate
());
num_sample_passed_
=
state
.
num_sample_passed
();
ProtoToTensor
(
state
.
parameter
(),
parameter_
);
ProtoToTensor
(
state
.
parameter
(),
momentums_
);
momentum_
=
state
.
momentum
();
}
}
// namespace optimizer
...
...
paddle/optimizer/sgd_optimizer.h
浏览文件 @
b72e8aa3
...
...
@@ -14,7 +14,7 @@ public:
decay_
(
d
),
nesterov_
(
n
)
{
if
(
momentum_
!=
0.0
)
{
size_t
size
=
p
->
size
();
size_t
size
=
p
arameter
->
size
();
// TODO: fix it with align aware allocator bind to Tensor
if
(
momentums_
)
delete
momentums_
;
momentums_
=
new
Tensor
(
size
);
...
...
@@ -25,7 +25,7 @@ public:
}
void
Update
(
const
Tensor
*
gradient
);
const
char
*
SerializeState
(
int
*
state_len
);
void
De
S
erializeState
(
const
std
::
string
&
state
);
void
De
s
erializeState
(
const
std
::
string
&
state
);
private:
Tensor
*
momentums_
;
...
...
proto/OptimizerConfig.proto
浏览文件 @
b72e8aa3
...
...
@@ -78,36 +78,51 @@ enum DataType {
repeated
bytes
content
=
2
;
}
message
OptimizerState
{
message
SGDOptimizerState
{
// learning rate policy
optional
double
learning_rate
=
101
;
optional
double
lr_decay_a
=
102
;
optional
double
lr_decay_b
=
103
;
optional
double
num_sample_passed
=
104
;
// momentum
optional
TensorProto
parameter
=
105
;
optional
TensorProto
momentums
=
1
;
// state
optional
TensorProto
parameter
=
1
;
optional
TensorProto
momentums
=
2
;
}
// adadelta
message
AdadeltaOptimizerState
{
// learning rate policy
optional
double
learning_rate
=
101
;
optional
double
lr_decay_a
=
102
;
optional
double
lr_decay_b
=
103
;
optional
double
num_sample_passed
=
104
;
// state
optional
TensorProto
parameter
=
1
;
optional
TensorProto
accum_gradient
=
2
;
optional
TensorProto
accum_delta
=
3
;
optional
TensorProto
update_delta
=
4
;
}
// adam
optional
TensorProto
velocitys
=
5
;
// momentum
optional
double
momentum
=
6
;
optional
double
decay
=
7
;
optional
bool
nesterov
=
8
;
// adadelta
optional
double
rho
=
9
;
optional
double
epsilon
=
10
;
// adam
optional
double
beta_1
=
11
;
optional
double
beta_2
=
12
;
message
AdagradOptimizerState
{
// learning rate policy
optional
double
learning_rate
=
101
;
optional
double
lr_decay_a
=
102
;
optional
double
lr_decay_b
=
103
;
optional
double
num_sample_passed
=
104
;
// state
optional
TensorProto
parameter
=
1
;
optional
TensorProto
accum_gradient
=
2
;
}
message
AdamOptimizerState
{
// learning rate policy
optional
double
learning_rate
=
101
;
optional
double
lr_decay_a
=
102
;
optional
double
lr_decay_b
=
103
;
optional
double
num_sample_passed
=
104
;
// state
optional
TensorProto
parameter
=
1
;
optional
TensorProto
momentums
=
2
;
optional
TensorProto
velocitys
=
3
;
}
message
OptimizerConfig
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录