__init__.py 3.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yang Yu 已提交
15
from __future__ import print_function
16
# import all class inside framework into fluid module
Y
Update  
Yang Yu 已提交
17 18
import framework
from framework import *
Y
Yang Yu 已提交
19 20
# import all class inside executor into fluid module
import executor
Y
Update  
Yang Yu 已提交
21 22
from executor import *

Y
Yang Yu 已提交
23
import io
Y
Update  
Yang Yu 已提交
24 25
import evaluator
import initializer
26 27 28
import layers
import nets
import optimizer
Y
Update  
Yang Yu 已提交
29
import backward
30
import regularizer
F
fengjiayi 已提交
31
import average
G
guosheng 已提交
32
from param_attr import ParamAttr, WeightNormParamAttr
Y
Yu Yang 已提交
33
from data_feeder import DataFeeder
Y
Update  
Yang Yu 已提交
34
from core import LoDTensor, CPUPlace, CUDAPlace
T
done  
typhoonzero 已提交
35
from distribute_transpiler import DistributeTranspiler
T
typhoonzero 已提交
36
from distribute_transpiler_simple import SimpleDistributeTranspiler
37 38
from concurrency import (Go, make_channel, channel_send, channel_recv,
                         channel_close)
Y
Update  
Yang Yu 已提交
39
import clip
40
from memory_optimization_transpiler import memory_optimize, release_memory
Y
Yang Yu 已提交
41
import profiler
Y
Yu Yang 已提交
42
import unique_name
43 44

Tensor = LoDTensor
Y
Yang Yu 已提交
45

46
__all__ = framework.__all__ + executor.__all__ + concurrency.__all__ + [
Y
Yu Yang 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    'io',
    'initializer',
    'layers',
    'nets',
    'optimizer',
    'learning_rate_decay',
    'backward',
    'regularizer',
    'LoDTensor',
    'CPUPlace',
    'CUDAPlace',
    'Tensor',
    'ParamAttr',
    'WeightNormParamAttr',
    'DataFeeder',
    'clip',
    'SimpleDistributeTranspiler',
    'DistributeTranspiler',
    'memory_optimize',
66
    'release_memory',
Y
Yu Yang 已提交
67 68
    'profiler',
    'unique_name',
69 70 71
]


Y
Yang Yu 已提交
72
def __bootstrap__():
73 74
    """
    Enable reading gflags from environment variables.
Y
Yu Yang 已提交
75

76 77 78 79 80
    Returns:
        None
    """
    import sys
    import core
Y
Yang Yu 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    import os

    try:
        num_threads = int(os.getenv('OMP_NUM_THREADS', '1'))
    except ValueError:
        num_threads = 1

    if num_threads > 1:
        print(
            'WARNING: OMP_NUM_THREADS set to {0}, not 1. The computation '
            'speed will not be optimized if you use data parallel. It will '
            'fail if this PaddlePaddle binary is compiled with OpenBlas since'
            ' OpenBlas does not support multi-threads.'.format(num_threads),
            file=sys.stderr)
        print('PLEASE USE OMP_NUM_THREADS WISELY.', file=sys.stderr)

    os.environ['OMP_NUM_THREADS'] = str(num_threads)

99 100 101
    read_env_flags = [
        'use_pinned_memory', 'check_nan_inf', 'benchmark', 'warpctc_dir'
    ]
102
    if core.is_compiled_with_cuda():
D
dzhwinter 已提交
103
        read_env_flags += ['fraction_of_gpu_memory_to_use']
Q
QI JUN 已提交
104 105
    core.init_gflags([sys.argv[0]] +
                     ["--tryfromenv=" + ",".join(read_env_flags)])
Y
Yang Yu 已提交
106
    core.init_glog(sys.argv[0])
107
    core.init_devices()
D
dzhwinter 已提交
108

109

Y
Yang Yu 已提交
110
layers.monkey_patch_variable()
Y
Yang Yu 已提交
111
__bootstrap__()