Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f8029403
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f8029403
编写于
3月 05, 2018
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove Evaluator.Accuracy
上级
101378c8
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
40 addition
and
63 deletion
+40
-63
benchmark/cluster/vgg16/vgg16_fluid.py
benchmark/cluster/vgg16/vgg16_fluid.py
+20
-15
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+1
-0
python/paddle/fluid/average.py
python/paddle/fluid/average.py
+0
-0
python/paddle/fluid/evaluator.py
python/paddle/fluid/evaluator.py
+0
-38
python/paddle/fluid/layers/metric.py
python/paddle/fluid/layers/metric.py
+0
-0
python/paddle/fluid/tests/book_memory_optimization/test_memopt_image_classification_train.py
...ry_optimization/test_memopt_image_classification_train.py
+11
-6
python/paddle/fluid/tests/unittests/test_profiler.py
python/paddle/fluid/tests/unittests/test_profiler.py
+8
-4
未找到文件。
benchmark/cluster/vgg16/vgg16_fluid.py
浏览文件 @
f8029403
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
...
@@ -138,13 +138,14 @@ def main():
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Evaluator
accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
predict
,
label
=
label
)
batch_size
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size
)
# inference program
inference_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
inference_program
):
test_target
=
accuracy
.
metrics
+
accuracy
.
states
inference_program
=
fluid
.
io
.
get_inference_program
(
test_target
)
inference_program
=
fluid
.
io
.
get_inference_program
(
batch_acc
)
# Optimization
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
args
.
learning_rate
)
...
...
@@ -157,27 +158,30 @@ def main():
# test
def
test
(
exe
):
accuracy
.
reset
(
exe
)
test_pass_acc
=
fluid
.
average
.
WeightedAverage
(
)
for
batch_id
,
data
in
enumerate
(
test_reader
()):
img_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
].
reshape
(
data_shape
),
data
)).
astype
(
"float32"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
exe
.
run
(
inference_program
,
feed
=
{
"pixel"
:
img_data
,
"label"
:
y_data
})
outs
=
exe
.
run
(
inference_program
,
feed
=
{
"pixel"
:
img_data
,
"label"
:
y_data
},
fetch_list
=
[
batch_acc
,
batch_size
])
test_pass_acc
.
add
(
value
=
np
.
array
(
outs
[
0
]),
weight
=
np
.
array
(
outs
[
1
]))
return
accuracy
.
eval
(
exe
)
return
test_pass_acc
.
eval
(
)
def
train_loop
(
exe
,
trainer_prog
):
iters
=
0
ts
=
time
.
time
()
train_pass_acc
=
fluid
.
average
.
WeightedAverage
()
for
pass_id
in
range
(
args
.
num_passes
):
# train
start_time
=
time
.
time
()
num_samples
=
0
accuracy
.
reset
(
exe
)
train_pass_acc
.
reset
(
)
with
profiler
.
profiler
(
"CPU"
,
'total'
)
as
prof
:
for
batch_id
,
data
in
enumerate
(
train_reader
()):
ts
=
time
.
time
()
...
...
@@ -187,13 +191,14 @@ def main():
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
loss
,
acc
=
exe
.
run
(
loss
,
acc
,
b_size
=
exe
.
run
(
trainer_prog
,
feed
=
{
"pixel"
:
img_data
,
"label"
:
y_data
},
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size
]
)
iters
+=
1
num_samples
+=
len
(
data
)
train_pass_acc
.
add
(
value
=
acc
,
weight
=
b_size
)
print
(
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s"
%
(
pass_id
,
iters
,
loss
,
acc
,
...
...
@@ -201,7 +206,7 @@ def main():
)
# The accuracy is the accumulation of batches, but not the current batch.
pass_elapsed
=
time
.
time
()
-
start_time
pass_train_acc
=
accuracy
.
eval
(
exe
)
pass_train_acc
=
train_pass_acc
.
eval
(
)
pass_test_acc
=
test
(
exe
)
print
(
"Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f
\n
"
...
...
python/paddle/fluid/__init__.py
浏览文件 @
f8029403
...
...
@@ -29,6 +29,7 @@ import optimizer
import
learning_rate_decay
import
backward
import
regularizer
import
average
from
param_attr
import
ParamAttr
,
WeightNormParamAttr
from
data_feeder
import
DataFeeder
from
core
import
LoDTensor
,
CPUPlace
,
CUDAPlace
...
...
python/paddle/
v2/
fluid/average.py
→
python/paddle/fluid/average.py
浏览文件 @
f8029403
文件已移动
python/paddle/fluid/evaluator.py
浏览文件 @
f8029403
...
...
@@ -105,44 +105,6 @@ class Evaluator(object):
return
state
class
Accuracy
(
Evaluator
):
"""
Average Accuracy for multiple mini-batches.
"""
def
__init__
(
self
,
input
,
label
,
k
=
1
,
**
kwargs
):
super
(
Accuracy
,
self
).
__init__
(
"accuracy"
,
**
kwargs
)
main_program
=
self
.
helper
.
main_program
if
main_program
.
current_block
().
idx
!=
0
:
raise
ValueError
(
"You can only invoke Evaluator in root block"
)
self
.
total
=
self
.
create_state
(
dtype
=
'int64'
,
shape
=
[
1
],
suffix
=
'total'
)
self
.
correct
=
self
.
create_state
(
dtype
=
'int64'
,
shape
=
[
1
],
suffix
=
'correct'
)
total
=
self
.
helper
.
create_tmp_variable
(
dtype
=
'int'
)
correct
=
self
.
helper
.
create_tmp_variable
(
dtype
=
'int'
)
acc
=
layers
.
accuracy
(
input
=
input
,
label
=
label
,
k
=
k
,
total
=
total
,
correct
=
correct
)
total
=
layers
.
cast
(
x
=
total
,
dtype
=
'int64'
)
correct
=
layers
.
cast
(
x
=
correct
,
dtype
=
'int64'
)
layers
.
sums
(
input
=
[
self
.
total
,
total
],
out
=
self
.
total
)
layers
.
sums
(
input
=
[
self
.
correct
,
correct
],
out
=
self
.
correct
)
self
.
metrics
.
append
(
acc
)
def
eval
(
self
,
executor
,
eval_program
=
None
):
if
eval_program
is
None
:
eval_program
=
Program
()
block
=
eval_program
.
current_block
()
with
program_guard
(
main_program
=
eval_program
):
total
=
_clone_var_
(
block
,
self
.
total
)
correct
=
_clone_var_
(
block
,
self
.
correct
)
total
=
layers
.
cast
(
total
,
dtype
=
'float32'
)
correct
=
layers
.
cast
(
correct
,
dtype
=
'float32'
)
out
=
layers
.
elementwise_div
(
x
=
correct
,
y
=
total
)
return
np
.
array
(
executor
.
run
(
eval_program
,
fetch_list
=
[
out
])[
0
])
class
ChunkEvaluator
(
Evaluator
):
"""
Accumulate counter numbers output by chunk_eval from mini-batches and
...
...
python/paddle/
v2/
fluid/layers/metric.py
→
python/paddle/fluid/layers/metric.py
浏览文件 @
f8029403
文件已移动
python/paddle/fluid/tests/book_memory_optimization/test_memopt_image_classification_train.py
浏览文件 @
f8029403
...
...
@@ -122,7 +122,8 @@ avg_cost = fluid.layers.mean(cost)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opts
=
optimizer
.
minimize
(
avg_cost
)
accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
predict
,
label
=
label
)
batch_size
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size
)
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
...
...
@@ -144,13 +145,17 @@ feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
exe
.
run
(
fluid
.
default_startup_program
())
i
=
0
accuracy
=
fluid
.
average
.
WeightedAverage
()
for
pass_id
in
range
(
PASS_NUM
):
accuracy
.
reset
(
exe
)
accuracy
.
reset
()
for
data
in
train_reader
():
loss
,
acc
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
pass_acc
=
accuracy
.
eval
(
exe
)
loss
,
acc
,
weight
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size
])
accuracy
.
add
(
value
=
acc
,
weight
=
weight
)
pass_acc
=
accuracy
.
eval
()
print
(
"loss:"
+
str
(
loss
)
+
" acc:"
+
str
(
acc
)
+
" pass_acc:"
+
str
(
pass_acc
))
# this model is slow, so if we can train two mini batch, we think it works properly.
...
...
python/paddle/fluid/tests/unittests/test_profiler.py
浏览文件 @
f8029403
...
...
@@ -37,7 +37,9 @@ class TestProfiler(unittest.TestCase):
label
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
predict
,
label
=
label
)
batch_size
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.001
,
momentum
=
0.9
)
opts
=
optimizer
.
minimize
(
avg_cost
,
startup_program
=
startup_program
)
...
...
@@ -46,7 +48,7 @@ class TestProfiler(unittest.TestCase):
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
accuracy
.
reset
(
exe
)
pass_acc_calculator
=
fluid
.
average
.
WeightedAverage
(
)
with
profiler
.
profiler
(
state
,
'total'
)
as
prof
:
for
iter
in
range
(
10
):
if
iter
==
2
:
...
...
@@ -57,9 +59,11 @@ class TestProfiler(unittest.TestCase):
outs
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
x
,
'y'
:
y
},
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size
]
)
acc
=
np
.
array
(
outs
[
1
])
pass_acc
=
accuracy
.
eval
(
exe
)
b_size
=
np
.
array
(
outs
[
2
])
pass_acc_calculator
.
add
(
value
=
acc
,
weight
=
b_size
)
pass_acc
=
pass_acc_calculator
.
eval
()
def
test_cpu_profiler
(
self
):
self
.
net_profiler
(
'CPU'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录