Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
9f731a60
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9f731a60
编写于
1月 19, 2018
作者:
Y
Yang Yu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add math operator patches
Users can use `a+b`, `a*10`.
上级
c73f00fe
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
347 addition
and
0 deletion
+347
-0
python/paddle/v2/fluid/__init__.py
python/paddle/v2/fluid/__init__.py
+2
-0
python/paddle/v2/fluid/layers/__init__.py
python/paddle/v2/fluid/layers/__init__.py
+3
-0
python/paddle/v2/fluid/layers/math_op_patch.py
python/paddle/v2/fluid/layers/math_op_patch.py
+161
-0
python/paddle/v2/fluid/tests/test_math_op_patch.py
python/paddle/v2/fluid/tests/test_math_op_patch.py
+181
-0
未找到文件。
python/paddle/v2/fluid/__init__.py
浏览文件 @
9f731a60
...
...
@@ -36,6 +36,7 @@ import clip
from
memory_optimization_transpiler
import
memory_optimize
Tensor
=
LoDTensor
__all__
=
framework
.
__all__
+
executor
.
__all__
+
[
'io'
,
'initializer'
,
...
...
@@ -93,4 +94,5 @@ def __bootstrap__():
core
.
init_devices
()
layers
.
monkey_patch_variable
()
__bootstrap__
()
python/paddle/v2/fluid/layers/__init__.py
浏览文件 @
9f731a60
...
...
@@ -23,6 +23,8 @@ import control_flow
from
control_flow
import
*
import
device
from
device
import
*
import
math_op_patch
from
math_op_patch
import
*
__all__
=
[]
__all__
+=
nn
.
__all__
...
...
@@ -31,3 +33,4 @@ __all__ += tensor.__all__
__all__
+=
control_flow
.
__all__
__all__
+=
ops
.
__all__
__all__
+=
device
.
__all__
__all__
+=
math_op_patch
.
__all__
python/paddle/v2/fluid/layers/math_op_patch.py
0 → 100644
浏览文件 @
9f731a60
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
..framework
import
Variable
,
unique_name
from
..registry
import
OpProtoHolder
__all__
=
[
'monkey_patch_variable'
]
def
monkey_patch_variable
():
def
new_name
():
return
unique_name
(
"tmp"
)
def
safe_get_dtype
(
var
):
try
:
dtype
=
var
.
dtype
except
:
raise
ValueError
(
"Cannot get data type from %s"
,
var
.
name
)
return
dtype
def
create_scalar
(
block
,
value
,
dtype
):
value
=
float
(
value
)
tmp_name
=
new_name
()
var
=
block
.
create_var
(
name
=
tmp_name
,
shape
=
[
1
],
dtype
=
dtype
)
block
.
append_op
(
type
=
"fill"
,
outputs
=
{
"Out"
:
[
var
]},
attrs
=
{
"value"
:
[
value
],
"shape"
:
[
1
],
"dtype"
:
dtype
})
return
var
def
create_tensor
(
block
,
value
,
dtype
,
shape
):
value
=
float
(
value
)
tmp_name
=
new_name
()
var
=
block
.
create_var
(
name
=
tmp_name
,
shape
=
shape
,
dtype
=
dtype
)
block
.
append_op
(
type
=
"fill_constant"
,
outputs
=
{
'Out'
:
[
var
]},
attrs
=
{
'dtype'
:
var
.
dtype
,
'shape'
:
shape
,
'value'
:
value
})
return
var
def
create_tensor_with_batchsize
(
ref_var
,
value
,
dtype
):
assert
isinstance
(
ref_var
,
Variable
)
value
=
float
(
value
)
tmp_name
=
new_name
()
var
=
ref_var
.
block
.
create_var
(
name
=
tmp_name
,
dtype
=
dtype
)
ref_var
.
block
.
append_op
(
type
=
'fill_constant_batch_size_like'
,
outputs
=
{
'Out'
:
[
var
]},
inputs
=
{
'Input'
:
[
ref_var
]},
attrs
=
{
'shape'
:
ref_var
.
shape
,
'value'
:
value
})
return
var
def
astype
(
self
,
dtype
):
"""
Cast a variable to data type.
NOTE: The variable must be a Tensor
Args:
self(Variable): The source variable
dtype: The target dtype
Returns:
Variable with new dtype
"""
tmp_name
=
new_name
()
out
=
self
.
block
.
create_var
(
name
=
tmp_name
,
dtype
=
dtype
)
self
.
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
[
self
]},
outputs
=
{
"Out"
:
[
out
]},
attrs
=
{
"in_dtype"
:
self
.
dtype
,
"out_dtype"
:
out
.
dtype
})
return
out
def
_elemwise_method_creator_
(
method_name
,
op_type
,
reverse
=
False
):
def
__impl__
(
self
,
other_var
):
lhs_dtype
=
safe_get_dtype
(
self
)
if
not
isinstance
(
other_var
,
Variable
):
if
reverse
:
has_batch_size
=
False
for
elem
in
self
.
shape
:
if
elem
<
0
:
has_batch_size
=
True
break
if
not
has_batch_size
:
other_var
=
create_tensor
(
self
.
block
,
other_var
,
dtype
=
lhs_dtype
,
shape
=
self
.
shape
)
else
:
other_var
=
create_tensor_with_batchsize
(
self
,
other_var
,
lhs_dtype
)
else
:
# add fill_op to self.block
other_var
=
create_scalar
(
self
.
block
,
value
=
other_var
,
dtype
=
lhs_dtype
)
rhs_dtype
=
safe_get_dtype
(
other_var
)
if
lhs_dtype
!=
rhs_dtype
:
other_var
=
astype
(
other_var
,
lhs_dtype
)
if
reverse
:
tmp
=
self
self
=
other_var
other_var
=
tmp
tmp_name
=
new_name
()
out
=
self
.
block
.
create_var
(
name
=
tmp_name
,
dtype
=
lhs_dtype
)
self
.
block
.
append_op
(
type
=
op_type
,
inputs
=
{
'X'
:
[
self
],
'Y'
:
[
other_var
]},
outputs
=
{
'Out'
:
out
})
return
out
comment
=
OpProtoHolder
.
instance
().
get_op_proto
(
op_type
).
comment
__impl__
.
__doc__
=
"""
{0}
Args:
self(Variable): left hand variable
other_var(Variable|float|int): right hand variable
Returns:
Variable
"""
.
format
(
comment
)
__impl__
.
__name__
=
method_name
return
__impl__
# inject methods
for
method_name
,
op_type
,
reverse
in
(
(
"__add__"
,
"elementwise_add"
,
False
),
# a+b == b+a. Do not need to reverse explicitly
(
"__radd__"
,
"elementwise_add"
,
False
),
(
"__sub__"
,
"elementwise_sub"
,
False
),
(
"__rsub__"
,
"elementwise_sub"
,
True
),
(
"__mul__"
,
"elementwise_mul"
,
False
),
# a*b == b*a. Do not need to reverse explicitly
(
"__rmul__"
,
"elementwise_mul"
,
False
),
(
"__div__"
,
"elementwise_div"
,
False
),
(
"__rdiv__"
,
"elementwise_div"
,
True
)):
setattr
(
Variable
,
method_name
,
_elemwise_method_creator_
(
method_name
,
op_type
,
reverse
))
Variable
.
astype
=
astype
python/paddle/v2/fluid/tests/test_math_op_patch.py
0 → 100644
浏览文件 @
9f731a60
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
decorators
import
paddle.v2.fluid
as
fluid
import
numpy
class
TestMathOpPatches
(
unittest
.
TestCase
):
@
decorators
.
prog_scope
()
def
test_add_scalar
(
self
):
a
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
1
])
b
=
a
+
10
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
a_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
b_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
},
fetch_list
=
[
b
])
self
.
assertTrue
(
numpy
.
allclose
(
a_np
+
10
,
b_np
))
@
decorators
.
prog_scope
()
def
test_radd_scalar
(
self
):
a
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
1
])
b
=
10
+
a
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
a_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
b_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
},
fetch_list
=
[
b
])
self
.
assertTrue
(
numpy
.
allclose
(
a_np
+
10
,
b_np
))
@
decorators
.
prog_scope
()
def
test_sub_scalar
(
self
):
a
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
1
])
b
=
a
-
10
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
a_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
b_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
},
fetch_list
=
[
b
])
self
.
assertTrue
(
numpy
.
allclose
(
a_np
-
10
,
b_np
))
@
decorators
.
prog_scope
()
def
test_radd_scalar
(
self
):
a
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
1
])
b
=
10
-
a
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
a_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
b_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
},
fetch_list
=
[
b
])
self
.
assertTrue
(
numpy
.
allclose
(
10
-
a_np
,
b_np
))
@
decorators
.
prog_scope
()
def
test_mul_scalar
(
self
):
a
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
1
])
b
=
a
*
10
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
a_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
b_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
},
fetch_list
=
[
b
])
self
.
assertTrue
(
numpy
.
allclose
(
a_np
*
10
,
b_np
))
@
decorators
.
prog_scope
()
def
test_rmul_scalar
(
self
):
a
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
1
])
b
=
10
*
a
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
a_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
b_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
},
fetch_list
=
[
b
])
self
.
assertTrue
(
numpy
.
allclose
(
10
*
a_np
,
b_np
))
@
decorators
.
prog_scope
()
def
test_div_scalar
(
self
):
a
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
1
])
b
=
a
/
10
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
a_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
b_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
},
fetch_list
=
[
b
])
self
.
assertTrue
(
numpy
.
allclose
(
a_np
/
10
,
b_np
))
@
decorators
.
prog_scope
()
def
test_rdiv_scalar
(
self
):
a
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
1
])
b
=
10
/
a
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
a_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
+
1e-2
b_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
},
fetch_list
=
[
b
])
self
.
assertTrue
(
numpy
.
allclose
(
10
/
a_np
,
b_np
))
@
decorators
.
prog_scope
()
def
test_div_two_tensor
(
self
):
a
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
1
])
b
=
fluid
.
layers
.
data
(
name
=
"b"
,
shape
=
[
1
])
c
=
a
/
b
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
a_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
b_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
+
1e-2
c_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
,
'b'
:
b_np
},
fetch_list
=
[
c
])
self
.
assertTrue
(
numpy
.
allclose
(
a_np
/
b_np
,
c_np
))
@
decorators
.
prog_scope
()
def
test_mul_two_tensor
(
self
):
a
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
1
])
b
=
fluid
.
layers
.
data
(
name
=
"b"
,
shape
=
[
1
])
c
=
a
*
b
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
a_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
b_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
c_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
,
'b'
:
b_np
},
fetch_list
=
[
c
])
self
.
assertTrue
(
numpy
.
allclose
(
a_np
*
b_np
,
c_np
))
@
decorators
.
prog_scope
()
def
test_add_two_tensor
(
self
):
a
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
1
])
b
=
fluid
.
layers
.
data
(
name
=
"b"
,
shape
=
[
1
])
c
=
a
+
b
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
a_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
b_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
c_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
,
'b'
:
b_np
},
fetch_list
=
[
c
])
self
.
assertTrue
(
numpy
.
allclose
(
a_np
+
b_np
,
c_np
))
@
decorators
.
prog_scope
()
def
test_sub_two_tensor
(
self
):
a
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
1
])
b
=
fluid
.
layers
.
data
(
name
=
"b"
,
shape
=
[
1
])
c
=
a
-
b
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
a_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
b_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
c_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
,
'b'
:
b_np
},
fetch_list
=
[
c
])
self
.
assertTrue
(
numpy
.
allclose
(
a_np
-
b_np
,
c_np
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录