im2col.cc 12.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
H
hedaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/im2col.h"
16
#include <vector>
H
hedaoyuan 已提交
17 18

namespace paddle {
19
namespace operators {
20
namespace math {
H
hedaoyuan 已提交
21 22

/*
H
hedaoyuan 已提交
23 24 25
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
26 27
 */
template <class T>
H
hedaoyuan 已提交
28
class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
29
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
30
 public:
Q
QI JUN 已提交
31
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
32 33 34
                  const framework::Tensor& im, const std::vector<int>& dilation,
                  const std::vector<int>& stride,
                  const std::vector<int>& padding, framework::Tensor* col) {
H
hedaoyuan 已提交
35
    PADDLE_ENFORCE(im.dims().size() == 3);
C
chengduoZH 已提交
36
    PADDLE_ENFORCE(col->dims().size() == 5);
H
hedaoyuan 已提交
37

C
chengduoZH 已提交
38 39 40
    int im_channels = im.dims()[0];
    int im_height = im.dims()[1];
    int im_width = im.dims()[2];
C
chengduoZH 已提交
41 42
    int filter_height = col->dims()[1];
    int filter_width = col->dims()[2];
T
tensor-tang 已提交
43 44
    int output_height = col->dims()[3];
    int output_width = col->dims()[4];
C
chengduoZH 已提交
45

C
chengduoZH 已提交
46
    int channels_col = im_channels * filter_height * filter_width;
H
hedaoyuan 已提交
47 48

    const T* im_data = im.data<T>();
C
chengduoZH 已提交
49
    T* col_data = col->data<T>();
T
tensor-tang 已提交
50 51 52 53 54 55 56
    // TODO(TJ): change me to template
    // further optimaze:
    // 1. padding != 1
    // 2. could also support stride_h != 1
    if (stride[0] == 1 && stride[1] == 1 && dilation[0] == 1 &&
        dilation[1] == 1 && padding[0] == 0 && padding[1] == 0) {
      int col_matrix_width = output_width * output_height;
T
tensor-tang 已提交
57
      int im_size = im_height * im_width;
T
tensor-tang 已提交
58
      size_t copy_size = sizeof(T) * output_width;
T
tensor-tang 已提交
59 60 61 62
      for (int oh = 0; oh < output_height; ++oh) {
        const T* im_data_start = im_data + oh * im_width;
        T* dst_data = col_data + oh * output_width;
        for (int ic = 0; ic < im_channels; ++ic) {
T
tensor-tang 已提交
63
          const T* src_data = im_data_start + ic * im_size;
T
tensor-tang 已提交
64 65
          for (int kh = 0; kh < filter_height; ++kh) {
            for (int kw = 0; kw < filter_width; ++kw) {
T
tensor-tang 已提交
66
              std::memcpy(dst_data, src_data + kw, copy_size);
T
tensor-tang 已提交
67 68 69 70 71 72 73 74 75
              dst_data = dst_data + col_matrix_width;
            }
            src_data = src_data + im_width;
          }
        }
      }
      return;
    }

H
hedaoyuan 已提交
76
    for (int c = 0; c < channels_col; ++c) {
C
chengduoZH 已提交
77 78 79
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / (filter_width * filter_height);
T
tensor-tang 已提交
80
      for (int h = 0; h < output_height; ++h) {
C
chengduoZH 已提交
81
        int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
T
tensor-tang 已提交
82
        for (int w = 0; w < output_width; ++w) {
C
chengduoZH 已提交
83
          int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
T
tensor-tang 已提交
84
          int col_idx = (c * output_height + h) * output_width + w;
C
chengduoZH 已提交
85
          int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx;
C
chengduoZH 已提交
86

C
chengduoZH 已提交
87 88 89 90
          col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height ||
                               im_col_idx < 0 || im_col_idx >= im_width)
                                  ? static_cast<T>(0)
                                  : im_data[im_idx];
H
hedaoyuan 已提交
91 92 93 94 95 96 97
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
98 99 100
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
101 102
 */
template <class T>
H
hedaoyuan 已提交
103
class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
104
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
105
 public:
Q
QI JUN 已提交
106
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
107 108 109 110 111
                  const framework::Tensor& col,
                  const std::vector<int>& dilation,
                  const std::vector<int>& stride,
                  const std::vector<int>& padding, framework::Tensor* im) {
    PADDLE_ENFORCE(im->dims().size() == 3);
H
hedaoyuan 已提交
112
    PADDLE_ENFORCE(col.dims().size() == 5);
C
chengduoZH 已提交
113 114 115
    int im_channels = im->dims()[0];
    int im_height = im->dims()[1];
    int im_width = im->dims()[2];
H
hedaoyuan 已提交
116 117
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
C
chengduoZH 已提交
118 119
    int col_height = col.dims()[3];
    int col_width = col.dims()[4];
C
chengduoZH 已提交
120

C
chengduoZH 已提交
121 122 123
    PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2] -
                       ((dilation[0] * (filter_height - 1) + 1))) /
                              stride[0] +
C
chengduoZH 已提交
124 125 126 127
                          1,
                      col_height,
                      "Output_height and padding(padding_up, padding_down) are "
                      "inconsistent.");
C
chengduoZH 已提交
128 129 130
    PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3] -
                       ((dilation[1] * (filter_width - 1) + 1))) /
                              stride[1] +
C
chengduoZH 已提交
131 132
                          1,
                      col_width,
C
chengduoZH 已提交
133
                      "Output_height and padding(padding_up, padding_down) are "
C
chengduoZH 已提交
134
                      "inconsistent.");
C
chengduoZH 已提交
135

C
chengduoZH 已提交
136
    int channels_col = im_channels * filter_height * filter_width;
H
hedaoyuan 已提交
137

C
chengduoZH 已提交
138
    T* im_data = im->data<T>();
H
hedaoyuan 已提交
139 140 141
    const T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
C
chengduoZH 已提交
142 143 144
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / (filter_width * filter_height);
C
chengduoZH 已提交
145
      for (int h = 0; h < col_height; ++h) {
C
chengduoZH 已提交
146
        int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
C
chengduoZH 已提交
147
        for (int w = 0; w < col_width; ++w) {
C
chengduoZH 已提交
148
          int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
C
chengduoZH 已提交
149 150
          if ((im_row_idx) >= 0 && (im_row_idx) < im_height &&
              (im_col_idx) >= 0 && (im_col_idx) < im_width) {
C
chengduoZH 已提交
151
            im_data[(im_row_idx + c_im * im_height) * im_width + im_col_idx] +=
C
chengduoZH 已提交
152
                col_data[(c * col_height + h) * col_width + w];
H
hedaoyuan 已提交
153 154 155 156 157 158 159
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
160
template class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
161
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
162
template class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
163
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
164
template class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
165
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
166
template class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
167
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
168 169

/*
H
hedaoyuan 已提交
170 171 172
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
173 174
 */
template <class T>
H
hedaoyuan 已提交
175
class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
176
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
177
 public:
Q
QI JUN 已提交
178
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
179 180 181
                  const framework::Tensor& im, const std::vector<int>& dilation,
                  const std::vector<int>& stride,
                  const std::vector<int>& padding, framework::Tensor* col) {
H
hedaoyuan 已提交
182
    PADDLE_ENFORCE(im.dims().size() == 3);
C
chengduoZH 已提交
183
    PADDLE_ENFORCE(col->dims().size() == 5);
C
chengduoZH 已提交
184 185 186
    int im_channels = im.dims()[0];
    int im_height = im.dims()[1];
    int im_width = im.dims()[2];
C
chengduoZH 已提交
187 188 189 190
    int filter_height = col->dims()[3];
    int filter_width = col->dims()[4];
    int col_height = col->dims()[0];
    int col_width = col->dims()[1];
H
hedaoyuan 已提交
191 192

    const T* im_data = im.data<T>();
C
chengduoZH 已提交
193
    T* col_data = col->data<T>();
H
hedaoyuan 已提交
194

C
chengduoZH 已提交
195 196 197
    for (int col_row_idx = 0; col_row_idx < col_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < col_width; ++col_col_idx) {
        for (int channel = 0; channel < im_channels; ++channel) {
H
hedaoyuan 已提交
198 199
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
C
refine  
chengduoZH 已提交
200 201
            int im_row_offset =
                col_row_idx * stride[0] + filter_row_idx - padding[0];
H
hedaoyuan 已提交
202 203 204
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_col_offset =
C
chengduoZH 已提交
205
                  col_col_idx * stride[1] + filter_col_idx - padding[1];
C
refine  
chengduoZH 已提交
206

C
chengduoZH 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
              int col_offset =
                  ((((col_row_idx)*col_width + col_col_idx) * im_channels +
                    channel) *
                       filter_height +
                   filter_row_idx) *
                      filter_width +
                  filter_col_idx;

              int im_offset = (channel * im_height + im_row_offset) * im_width +
                              im_col_offset;
              col_data[col_offset] =
                  (im_row_offset < 0 || im_row_offset >= im_height ||
                   im_col_offset < 0 || im_col_offset >= im_width)
                      ? static_cast<T>(0)
                      : im_data[im_offset];
H
hedaoyuan 已提交
222 223 224 225 226 227 228 229 230
            }
          }
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
231 232 233
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
234 235
 */
template <class T>
H
hedaoyuan 已提交
236
class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
237
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
238
 public:
Q
QI JUN 已提交
239
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
240 241 242 243 244
                  const framework::Tensor& col,
                  const std::vector<int>& dilation,
                  const std::vector<int>& stride,
                  const std::vector<int>& padding, framework::Tensor* im) {
    PADDLE_ENFORCE(im->dims().size() == 3);
H
hedaoyuan 已提交
245
    PADDLE_ENFORCE(col.dims().size() == 5);
C
chengduoZH 已提交
246 247 248
    int im_channels = im->dims()[0];
    int im_height = im->dims()[1];
    int im_width = im->dims()[2];
H
hedaoyuan 已提交
249 250
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
C
chengduoZH 已提交
251 252
    int col_height = col.dims()[0];
    int col_width = col.dims()[1];
H
hedaoyuan 已提交
253

C
chengduoZH 已提交
254 255 256 257 258 259 260 261 262 263
    PADDLE_ENFORCE_EQ(
        (im_height + padding[0] + padding[2] - filter_height) / stride[0] + 1,
        col_height,
        "Output_height and padding(padding_up, padding_down) are "
        "inconsistent.");
    PADDLE_ENFORCE_EQ(
        (im_width + padding[1] + padding[3] - filter_width) / stride[1] + 1,
        col_width,
        "col_width and padding(padding_left, padding_right) are "
        "inconsistent.");
264

C
chengduoZH 已提交
265
    T* im_data = im->data<T>();
H
hedaoyuan 已提交
266 267
    const T* col_data = col.data<T>();

C
chengduoZH 已提交
268 269 270
    for (int col_row_idx = 0; col_row_idx < col_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < col_width; ++col_col_idx) {
        for (int channel = 0; channel < im_channels; ++channel) {
H
hedaoyuan 已提交
271 272
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
C
refine  
chengduoZH 已提交
273 274
            int im_row_offset =
                col_row_idx * stride[0] + filter_row_idx - padding[0];
H
hedaoyuan 已提交
275 276 277
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_col_offset =
C
chengduoZH 已提交
278
                  col_col_idx * stride[1] + filter_col_idx - padding[1];
C
refine  
chengduoZH 已提交
279

C
chengduoZH 已提交
280 281 282 283 284 285 286
              int col_offset =
                  (((col_row_idx * col_width + col_col_idx) * im_channels +
                    channel) *
                       filter_height +
                   filter_row_idx) *
                      filter_width +
                  filter_col_idx;
C
refine  
chengduoZH 已提交
287

C
chengduoZH 已提交
288 289
              if (im_row_offset >= 0 && im_row_offset < im_height &&
                  im_col_offset >= 0 && im_col_offset < im_width) {
H
hedaoyuan 已提交
290
                int im_offset =
C
chengduoZH 已提交
291
                    (channel * im_height + im_row_offset) * im_width +
H
hedaoyuan 已提交
292 293
                    im_col_offset;
                im_data[im_offset] += col_data[col_offset];
H
hedaoyuan 已提交
294 295 296 297 298 299 300 301 302
              }
            }
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
303
template class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
304
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
305
template class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
306
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
307
template class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
308
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
309
template class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
310
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
311

312
}  // namespace math
313
}  // namespace operators
H
hedaoyuan 已提交
314
}  // namespace paddle