im2col.cc 12.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
H
hedaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/im2col.h"
16
#include <vector>
H
hedaoyuan 已提交
17 18

namespace paddle {
19
namespace operators {
20
namespace math {
H
hedaoyuan 已提交
21 22

/*
H
hedaoyuan 已提交
23 24 25
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
26 27
 */
template <class T>
H
hedaoyuan 已提交
28
class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
29
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
30
 public:
Q
QI JUN 已提交
31
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
32 33 34
                  const framework::Tensor& im, const std::vector<int>& dilation,
                  const std::vector<int>& stride,
                  const std::vector<int>& padding, framework::Tensor* col) {
H
hedaoyuan 已提交
35
    PADDLE_ENFORCE(im.dims().size() == 3);
C
chengduoZH 已提交
36
    PADDLE_ENFORCE(col->dims().size() == 5);
H
hedaoyuan 已提交
37

C
chengduoZH 已提交
38 39 40
    int im_channels = im.dims()[0];
    int im_height = im.dims()[1];
    int im_width = im.dims()[2];
C
chengduoZH 已提交
41 42
    int filter_height = col->dims()[1];
    int filter_width = col->dims()[2];
T
tensor-tang 已提交
43 44
    int output_height = col->dims()[3];
    int output_width = col->dims()[4];
C
chengduoZH 已提交
45

C
chengduoZH 已提交
46
    int channels_col = im_channels * filter_height * filter_width;
H
hedaoyuan 已提交
47 48

    const T* im_data = im.data<T>();
C
chengduoZH 已提交
49
    T* col_data = col->data<T>();
T
tensor-tang 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    // TODO(TJ): change me to template
    // further optimaze:
    // 1. padding != 1
    // 2. could also support stride_h != 1
    if (stride[0] == 1 && stride[1] == 1 && dilation[0] == 1 &&
        dilation[1] == 1 && padding[0] == 0 && padding[1] == 0) {
      int col_matrix_width = output_width * output_height;
      for (int oh = 0; oh < output_height; ++oh) {
        const T* im_data_start = im_data + oh * im_width;
        T* dst_data = col_data + oh * output_width;
        for (int ic = 0; ic < im_channels; ++ic) {
          const T* src_data = im_data_start + ic * im_height * im_width;
          for (int kh = 0; kh < filter_height; ++kh) {
            for (int kw = 0; kw < filter_width; ++kw) {
              std::memcpy(dst_data, src_data + kw, sizeof(T) * output_width);
              dst_data = dst_data + col_matrix_width;
            }
            src_data = src_data + im_width;
          }
        }
      }
      return;
    }

H
hedaoyuan 已提交
74
    for (int c = 0; c < channels_col; ++c) {
C
chengduoZH 已提交
75 76 77
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / (filter_width * filter_height);
T
tensor-tang 已提交
78
      for (int h = 0; h < output_height; ++h) {
C
chengduoZH 已提交
79
        int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
T
tensor-tang 已提交
80
        for (int w = 0; w < output_width; ++w) {
C
chengduoZH 已提交
81
          int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
T
tensor-tang 已提交
82
          int col_idx = (c * output_height + h) * output_width + w;
C
chengduoZH 已提交
83
          int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx;
C
chengduoZH 已提交
84

C
chengduoZH 已提交
85 86 87 88
          col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height ||
                               im_col_idx < 0 || im_col_idx >= im_width)
                                  ? static_cast<T>(0)
                                  : im_data[im_idx];
H
hedaoyuan 已提交
89 90 91 92 93 94 95
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
96 97 98
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
99 100
 */
template <class T>
H
hedaoyuan 已提交
101
class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
102
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
103
 public:
Q
QI JUN 已提交
104
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
105 106 107 108 109
                  const framework::Tensor& col,
                  const std::vector<int>& dilation,
                  const std::vector<int>& stride,
                  const std::vector<int>& padding, framework::Tensor* im) {
    PADDLE_ENFORCE(im->dims().size() == 3);
H
hedaoyuan 已提交
110
    PADDLE_ENFORCE(col.dims().size() == 5);
C
chengduoZH 已提交
111 112 113
    int im_channels = im->dims()[0];
    int im_height = im->dims()[1];
    int im_width = im->dims()[2];
H
hedaoyuan 已提交
114 115
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
C
chengduoZH 已提交
116 117
    int col_height = col.dims()[3];
    int col_width = col.dims()[4];
C
chengduoZH 已提交
118

C
chengduoZH 已提交
119 120 121
    PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2] -
                       ((dilation[0] * (filter_height - 1) + 1))) /
                              stride[0] +
C
chengduoZH 已提交
122 123 124 125
                          1,
                      col_height,
                      "Output_height and padding(padding_up, padding_down) are "
                      "inconsistent.");
C
chengduoZH 已提交
126 127 128
    PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3] -
                       ((dilation[1] * (filter_width - 1) + 1))) /
                              stride[1] +
C
chengduoZH 已提交
129 130
                          1,
                      col_width,
C
chengduoZH 已提交
131
                      "Output_height and padding(padding_up, padding_down) are "
C
chengduoZH 已提交
132
                      "inconsistent.");
C
chengduoZH 已提交
133

C
chengduoZH 已提交
134
    int channels_col = im_channels * filter_height * filter_width;
H
hedaoyuan 已提交
135

C
chengduoZH 已提交
136
    T* im_data = im->data<T>();
H
hedaoyuan 已提交
137 138 139
    const T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
C
chengduoZH 已提交
140 141 142
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / (filter_width * filter_height);
C
chengduoZH 已提交
143
      for (int h = 0; h < col_height; ++h) {
C
chengduoZH 已提交
144
        int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
C
chengduoZH 已提交
145
        for (int w = 0; w < col_width; ++w) {
C
chengduoZH 已提交
146
          int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
C
chengduoZH 已提交
147 148
          if ((im_row_idx) >= 0 && (im_row_idx) < im_height &&
              (im_col_idx) >= 0 && (im_col_idx) < im_width) {
C
chengduoZH 已提交
149
            im_data[(im_row_idx + c_im * im_height) * im_width + im_col_idx] +=
C
chengduoZH 已提交
150
                col_data[(c * col_height + h) * col_width + w];
H
hedaoyuan 已提交
151 152 153 154 155 156 157
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
158
template class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
159
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
160
template class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
161
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
162
template class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
163
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
164
template class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
165
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
166 167

/*
H
hedaoyuan 已提交
168 169 170
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
171 172
 */
template <class T>
H
hedaoyuan 已提交
173
class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
174
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
175
 public:
Q
QI JUN 已提交
176
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
177 178 179
                  const framework::Tensor& im, const std::vector<int>& dilation,
                  const std::vector<int>& stride,
                  const std::vector<int>& padding, framework::Tensor* col) {
H
hedaoyuan 已提交
180
    PADDLE_ENFORCE(im.dims().size() == 3);
C
chengduoZH 已提交
181
    PADDLE_ENFORCE(col->dims().size() == 5);
C
chengduoZH 已提交
182 183 184
    int im_channels = im.dims()[0];
    int im_height = im.dims()[1];
    int im_width = im.dims()[2];
C
chengduoZH 已提交
185 186 187 188
    int filter_height = col->dims()[3];
    int filter_width = col->dims()[4];
    int col_height = col->dims()[0];
    int col_width = col->dims()[1];
H
hedaoyuan 已提交
189 190

    const T* im_data = im.data<T>();
C
chengduoZH 已提交
191
    T* col_data = col->data<T>();
H
hedaoyuan 已提交
192

C
chengduoZH 已提交
193 194 195
    for (int col_row_idx = 0; col_row_idx < col_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < col_width; ++col_col_idx) {
        for (int channel = 0; channel < im_channels; ++channel) {
H
hedaoyuan 已提交
196 197
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
C
refine  
chengduoZH 已提交
198 199
            int im_row_offset =
                col_row_idx * stride[0] + filter_row_idx - padding[0];
H
hedaoyuan 已提交
200 201 202
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_col_offset =
C
chengduoZH 已提交
203
                  col_col_idx * stride[1] + filter_col_idx - padding[1];
C
refine  
chengduoZH 已提交
204

C
chengduoZH 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
              int col_offset =
                  ((((col_row_idx)*col_width + col_col_idx) * im_channels +
                    channel) *
                       filter_height +
                   filter_row_idx) *
                      filter_width +
                  filter_col_idx;

              int im_offset = (channel * im_height + im_row_offset) * im_width +
                              im_col_offset;
              col_data[col_offset] =
                  (im_row_offset < 0 || im_row_offset >= im_height ||
                   im_col_offset < 0 || im_col_offset >= im_width)
                      ? static_cast<T>(0)
                      : im_data[im_offset];
H
hedaoyuan 已提交
220 221 222 223 224 225 226 227 228
            }
          }
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
229 230 231
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
232 233
 */
template <class T>
H
hedaoyuan 已提交
234
class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
235
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
236
 public:
Q
QI JUN 已提交
237
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
238 239 240 241 242
                  const framework::Tensor& col,
                  const std::vector<int>& dilation,
                  const std::vector<int>& stride,
                  const std::vector<int>& padding, framework::Tensor* im) {
    PADDLE_ENFORCE(im->dims().size() == 3);
H
hedaoyuan 已提交
243
    PADDLE_ENFORCE(col.dims().size() == 5);
C
chengduoZH 已提交
244 245 246
    int im_channels = im->dims()[0];
    int im_height = im->dims()[1];
    int im_width = im->dims()[2];
H
hedaoyuan 已提交
247 248
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
C
chengduoZH 已提交
249 250
    int col_height = col.dims()[0];
    int col_width = col.dims()[1];
H
hedaoyuan 已提交
251

C
chengduoZH 已提交
252 253 254 255 256 257 258 259 260 261
    PADDLE_ENFORCE_EQ(
        (im_height + padding[0] + padding[2] - filter_height) / stride[0] + 1,
        col_height,
        "Output_height and padding(padding_up, padding_down) are "
        "inconsistent.");
    PADDLE_ENFORCE_EQ(
        (im_width + padding[1] + padding[3] - filter_width) / stride[1] + 1,
        col_width,
        "col_width and padding(padding_left, padding_right) are "
        "inconsistent.");
262

C
chengduoZH 已提交
263
    T* im_data = im->data<T>();
H
hedaoyuan 已提交
264 265
    const T* col_data = col.data<T>();

C
chengduoZH 已提交
266 267 268
    for (int col_row_idx = 0; col_row_idx < col_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < col_width; ++col_col_idx) {
        for (int channel = 0; channel < im_channels; ++channel) {
H
hedaoyuan 已提交
269 270
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
C
refine  
chengduoZH 已提交
271 272
            int im_row_offset =
                col_row_idx * stride[0] + filter_row_idx - padding[0];
H
hedaoyuan 已提交
273 274 275
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_col_offset =
C
chengduoZH 已提交
276
                  col_col_idx * stride[1] + filter_col_idx - padding[1];
C
refine  
chengduoZH 已提交
277

C
chengduoZH 已提交
278 279 280 281 282 283 284
              int col_offset =
                  (((col_row_idx * col_width + col_col_idx) * im_channels +
                    channel) *
                       filter_height +
                   filter_row_idx) *
                      filter_width +
                  filter_col_idx;
C
refine  
chengduoZH 已提交
285

C
chengduoZH 已提交
286 287
              if (im_row_offset >= 0 && im_row_offset < im_height &&
                  im_col_offset >= 0 && im_col_offset < im_width) {
H
hedaoyuan 已提交
288
                int im_offset =
C
chengduoZH 已提交
289
                    (channel * im_height + im_row_offset) * im_width +
H
hedaoyuan 已提交
290 291
                    im_col_offset;
                im_data[im_offset] += col_data[col_offset];
H
hedaoyuan 已提交
292 293 294 295 296 297 298 299 300
              }
            }
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
301
template class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
302
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
303
template class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
304
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
305
template class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
306
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
307
template class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
308
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
309

310
}  // namespace math
311
}  // namespace operators
H
hedaoyuan 已提交
312
}  // namespace paddle