提交 93551bd2 编写于 作者: C chengduoZH

refine unit test (Add dilation)

上级 21ce7042
......@@ -73,13 +73,13 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
h * stride_height - padding_up + h_offset * dilation_h;
int im_col_idx =
w * stride_width - padding_left + w_offset * dilation_w;
int col_idx = (c * col_height + h) * col_width + w;
int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx;
col_data[(c * col_height + h) * col_width + w] =
(im_row_idx < 0 || im_row_idx >= im_height || im_col_idx < 0 ||
im_col_idx >= im_width)
? static_cast<T>(0)
: im_data[(im_row_idx + c_im * im_height) * im_width +
im_col_idx];
col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height ||
im_col_idx < 0 || im_col_idx >= im_width)
? static_cast<T>(0)
: im_data[im_idx];
}
}
}
......
......@@ -10,23 +10,33 @@ def conv2d_forward_naive(input, filter, group, conv_param):
assert np.mod(out_c, group) == 0
sub_out_c = out_c / group
stride, pad = conv_param['stride'], conv_param['pad']
out_h = 1 + (in_h + 2 * pad[0] - f_h) / stride[0]
out_w = 1 + (in_w + 2 * pad[1] - f_w) / stride[1]
stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
'dilation']
out_h = 1 + (in_h + 2 * pad[0] - (dilation[0] * (f_h - 1) + 1)) / stride[0]
out_w = 1 + (in_w + 2 * pad[1] - (dilation[1] * (f_w - 1) + 1)) / stride[1]
out = np.zeros((in_n, out_c, out_h, out_w))
d_bolck_w = (dilation[0] * (f_h - 1) + 1)
d_bolck_h = (dilation[1] * (f_w - 1) + 1)
input_pad = np.pad(input, ((0, ), (0, ), (pad[0], ), (pad[1], )),
mode='constant',
constant_values=0)
filter_dilation = np.zeros((out_c, f_c, d_bolck_h, d_bolck_w))
filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[
1]] = filter
for i in range(out_h):
for j in range(out_w):
for g in range(group):
input_pad_masked = \
input_pad[:, g * f_c:(g + 1) * f_c,
i * stride[0]:i * stride[0] + f_h,
j * stride[1]:j * stride[1] + f_w]
i * stride[0]:i * stride[0] + d_bolck_h,
j * stride[1]:j * stride[1] + d_bolck_w]
f_sub = filter[g * sub_out_c:(g + 1) * sub_out_c, :, :, :]
f_sub = filter_dilation[g * sub_out_c:(g + 1) *
sub_out_c, :, :, :]
for k in range(sub_out_c):
out[:, g * sub_out_c + k, i, j] = \
np.sum(input_pad_masked * f_sub[k, :, :, :],
......@@ -42,7 +52,11 @@ class TestConv2dOp(OpTest):
self.init_dilation()
self.init_test_case()
conv2d_param = {'stride': self.stride, 'pad': self.pad}
conv2d_param = {
'stride': self.stride,
'pad': self.pad,
'dilation': self.dilations
}
input = np.random.random(self.input_size).astype("float32")
filter = np.random.random(self.filter_size).astype("float32")
output = conv2d_forward_naive(input, filter, self.groups,
......@@ -123,24 +137,47 @@ class TestWith1x1(TestConv2dOp):
self.op_type = "conv2d"
#----------------Conv2dCudnn----------------
class TestWithDilation(TestConv2dOp):
def init_test_case(self):
self.pad = [0, 0]
self.stride = [1, 1]
self.input_size = [2, 3, 10, 10] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 3, 3]
def init_dilation(self):
self.dilations = [2, 2]
class TestCudnn(TestConv2dOp):
def init_group(self):
self.groups = 1
self.groups = 3
def init_op_type(self):
self.op_type = "conv2d"
#----------------Conv2dCudnn----------------
class TestCudnn(TestConv2dOp):
def init_op_type(self):
self.op_type = "conv_cudnn"
class TestCudnnWithGroup(TestConv2dOp):
def init_group(self):
self.groups = 3
class TestCudnnWithGroup(TestWithGroup):
def init_op_type(self):
self.op_type = "conv_cudnn"
class TestCudnnWith1x1(TestWith1x1):
def init_op_type(self):
self.op_type = "conv_cudnn"
# cudnn v5 does not support dilation conv.
# class TestCudnnWithDilation(TestWithDilation):
# def init_op_type(self):
# self.op_type = "conv_cudnn"
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册