mot_jde_infer.py 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
20
from collections import defaultdict
21

22
import paddle
23 24
from paddle.inference import Config
from paddle.inference import create_predictor
25

26
from utils import argsparser, Timer, get_current_memory_mb
27
from infer import Detector, get_test_images, print_arguments, PredictConfig
28 29 30 31 32
from benchmark_utils import PaddleInferBenchmark

from ppdet.modeling.mot.tracker import JDETracker
from ppdet.modeling.mot.visualization import plot_tracking_dict
from ppdet.modeling.mot.utils import MOTTimer, write_mot_results
33 34 35 36 37 38 39 40

# Global dictionary
MOT_SUPPORT_MODELS = {
    'JDE',
    'FairMOT',
}


41
class JDE_Detector(Detector):
42 43 44 45
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
46
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
47
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
48
        batch_size (int): size of pre batch in inference
49 50 51 52 53 54 55 56 57 58 59 60
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
    """

    def __init__(self,
                 pred_config,
                 model_dir,
61
                 device='CPU',
62
                 run_mode='fluid',
63
                 batch_size=1,
64 65 66 67 68 69
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
70 71 72
        super(JDE_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
73
            device=device,
74 75
            run_mode=run_mode,
            batch_size=batch_size,
76 77 78 79 80 81
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
82
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
83
        assert pred_config.tracker, "Tracking model should have tracker"
84 85
        self.num_classes = len(pred_config.labels)

86
        tp = pred_config.tracker
F
Feng Ni 已提交
87 88
        min_box_area = tp['min_box_area'] if 'min_box_area' in tp else 200
        vertical_ratio = tp['vertical_ratio'] if 'vertical_ratio' in tp else 1.6
89 90 91
        conf_thres = tp['conf_thres'] if 'conf_thres' in tp else 0.
        tracked_thresh = tp['tracked_thresh'] if 'tracked_thresh' in tp else 0.7
        metric_type = tp['metric_type'] if 'metric_type' in tp else 'euclidean'
92

G
George Ni 已提交
93
        self.tracker = JDETracker(
94
            num_classes=self.num_classes,
F
Feng Ni 已提交
95 96
            min_box_area=min_box_area,
            vertical_ratio=vertical_ratio,
G
George Ni 已提交
97 98 99
            conf_thres=conf_thres,
            tracked_thresh=tracked_thresh,
            metric_type=metric_type)
100

101
    def postprocess(self, pred_dets, pred_embs, threshold):
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        online_targets_dict = self.tracker.update(pred_dets, pred_embs)

        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        for cls_id in range(self.num_classes):
            online_targets = online_targets_dict[cls_id]
            for t in online_targets:
                tlwh = t.tlwh
                tid = t.track_id
                tscore = t.score
                if tscore < threshold: continue
                if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                online_tlwhs[cls_id].append(tlwh)
                online_ids[cls_id].append(tid)
                online_scores[cls_id].append(tscore)
G
George Ni 已提交
121
        return online_tlwhs, online_scores, online_ids
122

123
    def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
124 125
        '''
        Args:
126
            image_list (list): list of image
127 128
            threshold (float): threshold of predicted box' score
        Returns:
129
            online_tlwhs, online_scores, online_ids (dict[np.array])
130 131
        '''
        self.det_times.preprocess_time_s.start()
132
        inputs = self.preprocess(image_list)
133
        self.det_times.preprocess_time_s.end()
G
George Ni 已提交
134

135 136 137 138 139 140
        pred_dets, pred_embs = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

G
George Ni 已提交
141 142 143 144 145 146
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            pred_dets = boxes_tensor.copy_to_cpu()

147 148 149 150 151 152 153 154 155 156 157
        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            pred_dets = boxes_tensor.copy_to_cpu()
            embs_tensor = self.predictor.get_output_handle(output_names[1])
            pred_embs = embs_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
158 159
        online_tlwhs, online_scores, online_ids = self.postprocess(
            pred_dets, pred_embs, threshold)
160 161
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
G
George Ni 已提交
162
        return online_tlwhs, online_scores, online_ids
163 164


G
George Ni 已提交
165 166
def predict_image(detector, image_list):
    results = []
167 168
    num_classes = detector.num_classes
    data_type = 'mcmot' if num_classes > 1 else 'mot'
F
Feng Ni 已提交
169 170
    ids2names = detector.pred_config.labels

G
George Ni 已提交
171
    image_list.sort()
172
    for frame_id, img_file in enumerate(image_list):
G
George Ni 已提交
173 174
        frame = cv2.imread(img_file)
        if FLAGS.run_benchmark:
175
            detector.predict([frame], FLAGS.threshold, warmup=10, repeats=10)
G
George Ni 已提交
176 177 178 179
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
180
            print('Test iter {}, file name:{}'.format(frame_id, img_file))
G
George Ni 已提交
181 182
        else:
            online_tlwhs, online_scores, online_ids = detector.predict(
183
                [frame], FLAGS.threshold)
184
            online_im = plot_tracking_dict(frame, num_classes, online_tlwhs,
F
Feng Ni 已提交
185 186
                                           online_ids, online_scores, frame_id,
                                           ids2names=ids2names)
G
George Ni 已提交
187 188 189
            if FLAGS.save_images:
                if not os.path.exists(FLAGS.output_dir):
                    os.makedirs(FLAGS.output_dir)
190 191 192 193
                img_name = os.path.split(img_file)[-1]
                out_path = os.path.join(FLAGS.output_dir, img_name)
                cv2.imwrite(out_path, online_im)
                print("save result to: " + out_path)
G
George Ni 已提交
194 195


196
def predict_video(detector, camera_id):
197
    video_name = 'mot_output.mp4'
198 199 200 201 202
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
203
    # Get Video info : resolution, fps, frame count
204 205
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
206 207 208 209
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

210 211 212
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
G
George Ni 已提交
213
    if not FLAGS.save_images:
214
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
G
George Ni 已提交
215
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
216 217
    frame_id = 0
    timer = MOTTimer()
218 219 220
    results = defaultdict(list)  # support single class and multi classes
    num_classes = detector.num_classes
    data_type = 'mcmot' if num_classes > 1 else 'mot'
F
Feng Ni 已提交
221 222
    ids2names = detector.pred_config.labels

223 224 225 226 227
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer.tic()
G
George Ni 已提交
228
        online_tlwhs, online_scores, online_ids = detector.predict(
229
            [frame], FLAGS.threshold)
230 231
        timer.toc()

232 233 234 235
        for cls_id in range(num_classes):
            results[cls_id].append((frame_id + 1, online_tlwhs[cls_id],
                                    online_scores[cls_id], online_ids[cls_id]))

G
George Ni 已提交
236
        fps = 1. / timer.average_time
237
        im = plot_tracking_dict(
238
            frame,
239
            num_classes,
240 241
            online_tlwhs,
            online_ids,
G
George Ni 已提交
242
            online_scores,
243
            frame_id=frame_id,
F
Feng Ni 已提交
244 245
            fps=fps,
            ids2names=ids2names)
G
George Ni 已提交
246 247 248 249 250
        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
G
George Ni 已提交
251
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
G
George Ni 已提交
252 253
        else:
            writer.write(im)
254

255
        frame_id += 1
256
        print('detect frame: %d' % (frame_id))
257 258 259 260
        if camera_id != -1:
            cv2.imshow('Tracking Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
G
George Ni 已提交
261
    if FLAGS.save_mot_txts:
G
George Ni 已提交
262 263
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
264 265

        write_mot_results(result_filename, results, data_type, num_classes)
G
George Ni 已提交
266 267 268

    if FLAGS.save_images:
        save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
F
Feng Ni 已提交
269 270
        cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(save_dir,
                                                              out_path)
G
George Ni 已提交
271 272 273 274
        os.system(cmd_str)
        print('Save video in {}.'.format(out_path))
    else:
        writer.release()
275 276 277


def main():
G
George Ni 已提交
278
    pred_config = PredictConfig(FLAGS.model_dir)
279
    detector = JDE_Detector(
280 281
        pred_config,
        FLAGS.model_dir,
282
        device=FLAGS.device,
283 284 285 286 287 288 289 290 291 292 293 294
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, FLAGS.camera_id)
    else:
G
George Ni 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, img_list)
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            data_info = {
                'batch_size': 1,
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
            det_log('MOT')
321 322 323 324 325 326 327


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
328 329 330
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
331 332

    main()